Swaminathan, Gurumurthy
SemiGPC: Distribution-Aware Label Refinement for Imbalanced Semi-Supervised Learning Using Gaussian Processes
Lemkhenter, Abdelhak, Wang, Manchen, Zancato, Luca, Swaminathan, Gurumurthy, Favaro, Paolo, Modolo, Davide
In this paper we introduce SemiGPC, a distribution-aware label refinement strategy based on Gaussian Processes where the predictions of the model are derived from the labels posterior distribution. Differently from other buffer-based semi-supervised methods such as CoMatch and SimMatch, our SemiGPC includes a normalization term that addresses imbalances in the global data distribution while maintaining local sensitivity. This explicit control allows SemiGPC to be more robust to confirmation bias especially under class imbalance. We show that SemiGPC improves performance when paired with different Semi-Supervised methods such as FixMatch, ReMixMatch, SimMatch and FreeMatch and different pre-training strategies including MSN and Dino. We also show that SemiGPC achieves state of the art results under different degrees of class imbalance on standard CIFAR10-LT/CIFAR100-LT especially in the low data-regime. Using SemiGPC also results in about 2% avg.accuracy increase compared to a new competitive baseline on the more challenging benchmarks SemiAves, SemiCUB, SemiFungi and Semi-iNat.
A Meta-Learning Approach to Predicting Performance and Data Requirements
Jain, Achin, Swaminathan, Gurumurthy, Favaro, Paolo, Yang, Hao, Ravichandran, Avinash, Harutyunyan, Hrayr, Achille, Alessandro, Dabeer, Onkar, Schiele, Bernt, Swaminathan, Ashwin, Soatto, Stefano
We propose an approach to estimate the number of samples required for a model to reach a target performance. We find that the power law, the de facto principle to estimate model performance, leads to large error when using a small dataset (e.g., 5 samples per class) for extrapolation. This is because the log-performance error against the log-dataset size follows a nonlinear progression in the few-shot regime followed by a linear progression in the high-shot regime. We introduce a novel piecewise power law (PPL) that handles the two data regimes differently. To estimate the parameters of the PPL, we introduce a random forest regressor trained via meta learning that generalizes across classification/detection tasks, ResNet/ViT based architectures, and random/pre-trained initializations. The PPL improves the performance estimation on average by 37% across 16 classification and 33% across 10 detection datasets, compared to the power law. We further extend the PPL to provide a confidence bound and use it to limit the prediction horizon that reduces over-estimation of data by 76% on classification and 91% on detection datasets.