Svete, Anej
What Languages are Easy to Language-Model? A Perspective from Learning Probabilistic Regular Languages
Borenstein, Nadav, Svete, Anej, Chan, Robin, Valvoda, Josef, Nowak, Franz, Augenstein, Isabelle, Chodroff, Eleanor, Cotterell, Ryan
What can large language models learn? By definition, language models (LM) are distributions over strings. Therefore, an intuitive way of addressing the above question is to formalize it as a matter of learnability of classes of distributions over strings. While prior work in this direction focused on assessing the theoretical limits, in contrast, we seek to understand the empirical learnability. Unlike prior empirical work, we evaluate neural LMs on their home turf-learning probabilistic languages-rather than as classifiers of formal languages. In particular, we investigate the learnability of regular LMs (RLMs) by RNN and Transformer LMs. We empirically test the learnability of RLMs as a function of various complexity parameters of the RLM and the hidden state size of the neural LM. We find that the RLM rank, which corresponds to the size of linear space spanned by the logits of its conditional distributions, and the expected length of sampled strings are strong and significant predictors of learnability for both RNNs and Transformers. Several other predictors also reach significance, but with differing patterns between RNNs and Transformers.
On Affine Homotopy between Language Encoders
Chan, Robin SM, Boumasmoud, Reda, Svete, Anej, Ren, Yuxin, Guo, Qipeng, Jin, Zhijing, Ravfogel, Shauli, Sachan, Mrinmaya, Schรถlkopf, Bernhard, El-Assady, Mennatallah, Cotterell, Ryan
Pre-trained language encoders -- functions that represent text as vectors -- are an integral component of many NLP tasks. We tackle a natural question in language encoder analysis: What does it mean for two encoders to be similar? We contend that a faithful measure of similarity needs to be \emph{intrinsic}, that is, task-independent, yet still be informative of \emph{extrinsic} similarity -- the performance on downstream tasks. It is common to consider two encoders similar if they are \emph{homotopic}, i.e., if they can be aligned through some transformation. In this spirit, we study the properties of \emph{affine} alignment of language encoders and its implications on extrinsic similarity. We find that while affine alignment is fundamentally an asymmetric notion of similarity, it is still informative of extrinsic similarity. We confirm this on datasets of natural language representations. Beyond providing useful bounds on extrinsic similarity, affine intrinsic similarity also allows us to begin uncovering the structure of the space of pre-trained encoders by defining an order over them.
The Role of $n$-gram Smoothing in the Age of Neural Networks
Malagutti, Luca, Buinovskij, Andrius, Svete, Anej, Meister, Clara, Amini, Afra, Cotterell, Ryan
For nearly three decades, language models derived from the $n$-gram assumption held the state of the art on the task. The key to their success lay in the application of various smoothing techniques that served to combat overfitting. However, when neural language models toppled $n$-gram models as the best performers, $n$-gram smoothing techniques became less relevant. Indeed, it would hardly be an understatement to suggest that the line of inquiry into $n$-gram smoothing techniques became dormant. This paper re-opens the role classical $n$-gram smoothing techniques may play in the age of neural language models. First, we draw a formal equivalence between label smoothing, a popular regularization technique for neural language models, and add-$\lambda$ smoothing. Second, we derive a generalized framework for converting any $n$-gram smoothing technique into a regularizer compatible with neural language models. Our empirical results find that our novel regularizers are comparable to and, indeed, sometimes outperform label smoothing on language modeling and machine translation.
Recurrent Neural Language Models as Probabilistic Finite-state Automata
Svete, Anej, Cotterell, Ryan
Studying language models (LMs) in terms of well-understood formalisms allows us to precisely characterize their abilities and limitations. Previous work has investigated the representational capacity of recurrent neural network (RNN) LMs in terms of their capacity to recognize unweighted formal languages. However, LMs do not describe unweighted formal languages -- rather, they define \emph{probability distributions} over strings. In this work, we study what classes of such probability distributions RNN LMs can represent, which allows us to make more direct statements about their capabilities. We show that simple RNNs are equivalent to a subclass of probabilistic finite-state automata, and can thus model a strict subset of probability distributions expressible by finite-state models. Furthermore, we study the space complexity of representing finite-state LMs with RNNs. We show that, to represent an arbitrary deterministic finite-state LM with $N$ states over an alphabet $\alphabet$, an RNN requires $\Omega\left(N |\Sigma|\right)$ neurons. These results present a first step towards characterizing the classes of distributions RNN LMs can represent and thus help us understand their capabilities and limitations.
On the Representational Capacity of Recurrent Neural Language Models
Nowak, Franz, Svete, Anej, Du, Li, Cotterell, Ryan
This work investigates the computational expressivity of language models (LMs) based on recurrent neural networks (RNNs). Siegelmann and Sontag (1992) famously showed that RNNs with rational weights and hidden states and unbounded computation time are Turing complete. However, LMs define weightings over strings in addition to just (unweighted) language membership and the analysis of the computational power of RNN LMs (RLMs) should reflect this. We extend the Turing completeness result to the probabilistic case, showing how a rationally weighted RLM with unbounded computation time can simulate any deterministic probabilistic Turing machine (PTM) with rationally weighted transitions. Since, in practice, RLMs work in real-time, processing a symbol at every time step, we treat the above result as an upper bound on the expressivity of RLMs. We also provide a lower bound by showing that under the restriction to real-time computation, such models can simulate deterministic real-time rational PTMs.
Formal Aspects of Language Modeling
Cotterell, Ryan, Svete, Anej, Meister, Clara, Liu, Tianyu, Du, Li
Large language models have become one of the most commonly deployed NLP inventions. In the past half-decade, their integration into core natural language processing tools has dramatically increased the performance of such tools, and they have entered the public discourse surrounding artificial intelligence. Consequently, it is important for both developers and researchers alike to understand the mathematical foundations of large language models, as well as how to implement them. These notes are the accompaniment to the theoretical portion of the ETH Z\"urich course on large language models, covering what constitutes a language model from a formal, theoretical perspective.
A Geometric Notion of Causal Probing
Guerner, Clรฉment, Svete, Anej, Liu, Tianyu, Warstadt, Alexander, Cotterell, Ryan
Large language models rely on real-valued representations of text to make their predictions. These representations contain information learned from the data that the model has trained on, including knowledge of linguistic properties and forms of demographic bias, e.g., based on gender. A growing body of work has considered removing information about concepts such as these using orthogonal projections onto subspaces of the representation space. We contribute to this body of work by proposing a formal definition of $\textit{intrinsic}$ information in a subspace of a language model's representation space. We propose a counterfactual approach that avoids the failure mode of spurious correlations (Kumar et al., 2022) by treating components in the subspace and its orthogonal complement independently. We show that our counterfactual notion of information in a subspace is optimized by a $\textit{causal}$ concept subspace. Furthermore, this intervention allows us to attempt concept controlled generation by manipulating the value of the conceptual component of a representation. Empirically, we find that R-LACE (Ravfogel et al., 2022) returns a one-dimensional subspace containing roughly half of total concept information under our framework. Our causal controlled intervention shows that, for at least one model, the subspace returned by R-LACE can be used to manipulate the concept value of the generated word with precision.
Algorithms for Acyclic Weighted Finite-State Automata with Failure Arcs
Svete, Anej, Dayan, Benjamin, Vieira, Tim, Cotterell, Ryan, Eisner, Jason
Weighted finite-state automata (WSFAs) are commonly used in NLP. Failure transitions are a useful extension for compactly representing backoffs or interpolation in $n$-gram models and CRFs, which are special cases of WFSAs. The pathsum in ordinary acyclic WFSAs is efficiently computed by the backward algorithm in time $O(|E|)$, where $E$ is the set of transitions. However, this does not allow failure transitions, and preprocessing the WFSA to eliminate failure transitions could greatly increase $|E|$. We extend the backward algorithm to handle failure transitions directly. Our approach is efficient when the average state has outgoing arcs for only a small fraction $s \ll 1$ of the alphabet $\Sigma$. We propose an algorithm for general acyclic WFSAs which runs in $O{\left(|E| + s |\Sigma| |Q| T_\text{max} \log{|\Sigma|}\right)}$, where $Q$ is the set of states and $T_\text{max}$ is the size of the largest connected component of failure transitions. When the failure transition topology satisfies a condition exemplified by CRFs, the $T_\text{max}$ factor can be dropped, and when the weight semiring is a ring, the $\log{|\Sigma|}$ factor can be dropped. In the latter case (ring-weighted acyclic WFSAs), we also give an alternative algorithm with complexity $\displaystyle O{\left(|E| + |\Sigma| |Q| \min(1,s\pi_\text{max}) \right)}$, where $\pi_\text{max}$ is the size of the longest failure path.