Goto

Collaborating Authors

 Sutter, Tobias


Towards Optimal Offline Reinforcement Learning

arXiv.org Machine Learning

We study offline reinforcement learning problems with a long-run average reward objective. The state-action pairs generated by any fixed behavioral policy thus follow a Markov chain, and the {\em empirical} state-action-next-state distribution satisfies a large deviations principle. We use the rate function of this large deviations principle to construct an uncertainty set for the unknown {\em true} state-action-next-state distribution. We also construct a distribution shift transformation that maps any distribution in this uncertainty set to a state-action-next-state distribution of the Markov chain generated by a fixed evaluation policy, which may differ from the unknown behavioral policy. We prove that the worst-case average reward of the evaluation policy with respect to all distributions in the shifted uncertainty set provides, in a rigorous statistical sense, the least conservative estimator for the average reward under the unknown true distribution. This guarantee is available even if one has only access to one single trajectory of serially correlated state-action pairs. The emerging robust optimization problem can be viewed as a robust Markov decision process with a non-rectangular uncertainty set. We adapt an efficient policy gradient algorithm to solve this problem. Numerical experiments show that our methods compare favorably against state-of-the-art methods.


Newton Losses: Using Curvature Information for Learning with Differentiable Algorithms

arXiv.org Artificial Intelligence

When training neural networks with custom objectives, such as ranking losses and shortest-path losses, a common problem is that they are, per se, non-differentiable. A popular approach is to continuously relax the objectives to provide gradients, enabling learning. However, such differentiable relaxations are often non-convex and can exhibit vanishing and exploding gradients, making them (already in isolation) hard to optimize. Here, the loss function poses the bottleneck when training a deep neural network. We present Newton Losses, a method for improving the performance of existing hard to optimize losses by exploiting their second-order information via their empirical Fisher and Hessian matrices. Instead of training the neural network with second-order techniques, we only utilize the loss function's second-order information to replace it by a Newton Loss, while training the network with gradient descent. This makes our method computationally efficient. We apply Newton Losses to eight differentiable algorithms for sorting and shortest-paths, achieving significant improvements for less-optimized differentiable algorithms, and consistent improvements, even for well-optimized differentiable algorithms.


Regularized Q-learning through Robust Averaging

arXiv.org Artificial Intelligence

We propose a new Q-learning variant, called 2RA Q-learning, that addresses some weaknesses of existing Q-learning methods in a principled manner. One such weakness is an underlying estimation bias which cannot be controlled and often results in poor performance. We propose a distributionally robust estimator for the maximum expected value term, which allows us to precisely control the level of estimation bias introduced. The distributionally robust estimator admits a closed-form solution such that the proposed algorithm has a computational cost per iteration comparable to Watkins' Q-learning. For the tabular case, we show that 2RA Q-learning converges to the optimal policy and analyze its asymptotic mean-squared error. Lastly, we conduct numerical experiments for various settings, which corroborate our theoretical findings and indicate that 2RA Q-learning often performs better than existing methods.


Probabilistic Verification of Neural Networks using Branch and Bound

arXiv.org Artificial Intelligence

Probabilistic verification of neural networks is concerned with formally analysing the output distribution of a neural network under a probability distribution of the inputs. Examples of probabilistic verification include verifying the demographic parity fairness notion or quantifying the safety of a neural network. We present a new algorithm for the probabilistic verification of neural networks based on an algorithm for computing and iteratively refining lower and upper bounds on probabilities over the outputs of a neural network. By applying state-of-the-art bound propagation and branch and bound techniques from non-probabilistic neural network verification, our algorithm significantly outpaces existing probabilistic verification algorithms, reducing solving times for various benchmarks from the literature from tens of minutes to tens of seconds. Furthermore, our algorithm compares favourably even to dedicated algorithms for restricted subsets of probabilistic verification. We complement our empirical evaluation with a theoretical analysis, proving that our algorithm is sound and, under mildly restrictive conditions, also complete when using a suitable set of heuristics.


Randomized algorithms and PAC bounds for inverse reinforcement learning in continuous spaces

arXiv.org Artificial Intelligence

This work studies discrete-time discounted Markov decision processes with continuous state and action spaces and addresses the inverse problem of inferring a cost function from observed optimal behavior. We first consider the case in which we have access to the entire expert policy and characterize the set of solutions to the inverse problem by using occupation measures, linear duality, and complementary slackness conditions. To avoid trivial solutions and ill-posedness, we introduce a natural linear normalization constraint. This results in an infinite-dimensional linear feasibility problem, prompting a thorough analysis of its properties. Next, we use linear function approximators and adopt a randomized approach, namely the scenario approach and related probabilistic feasibility guarantees, to derive epsilon-optimal solutions for the inverse problem. We further discuss the sample complexity for a desired approximation accuracy. Finally, we deal with the more realistic case where we only have access to a finite set of expert demonstrations and a generative model and provide bounds on the error made when working with samples.


End-to-End Learning for Stochastic Optimization: A Bayesian Perspective

arXiv.org Artificial Intelligence

We develop a principled approach to end-to-end learning in stochastic optimization. First, we show that the standard end-to-end learning algorithm admits a Bayesian interpretation and trains a posterior Bayes action map. Building on the insights of this analysis, we then propose new end-to-end learning algorithms for training decision maps that output solutions of empirical risk minimization and distributionally robust optimization problems, two dominant modeling paradigms in optimization under uncertainty. Numerical results for a synthetic newsvendor problem illustrate the key differences between alternative training schemes. We also investigate an economic dispatch problem based on real data to showcase the impact of the neural network architecture of the decision maps on their test performance.


A Robust Optimisation Perspective on Counterexample-Guided Repair of Neural Networks

arXiv.org Artificial Intelligence

Counterexample-guided repair aims at creating neural networks with mathematical safety guarantees, facilitating the application of neural networks in safety-critical domains. However, whether counterexample-guided repair is guaranteed to terminate remains an open question. We approach this question by showing that counterexample-guided repair can be viewed as a robust optimisation algorithm. While termination guarantees for neural network repair itself remain beyond our reach, we prove termination for more restrained machine learning models and disprove termination in a general setting. We empirically study the practical implications of our theoretical results, demonstrating the suitability of common verifiers and falsifiers for repair despite a disadvantageous theoretical result. Additionally, we use our theoretical insights to devise a novel algorithm for repairing linear regression models based on quadratic programming, surpassing existing approaches.


Policy Gradient Algorithms for Robust MDPs with Non-Rectangular Uncertainty Sets

arXiv.org Artificial Intelligence

We propose a policy gradient algorithm for robust infinite-horizon Markov Decision Processes (MDPs) with non-rectangular uncertainty sets, thereby addressing an open challenge in the robust MDP literature. Indeed, uncertainty sets that display statistical optimality properties and make optimal use of limited data often fail to be rectangular. Unfortunately, the corresponding robust MDPs cannot be solved with dynamic programming techniques and are in fact provably intractable. This prompts us to develop a projected Langevin dynamics algorithm tailored to the robust policy evaluation problem, which offers global optimality guarantees. We also propose a deterministic policy gradient method that solves the robust policy evaluation problem approximately, and we prove that the approximation error scales with a new measure of non-rectangularity of the uncertainty set. Numerical experiments showcase that our projected Langevin dynamics algorithm can escape local optima, while algorithms tailored to rectangular uncertainty fail to do so.


Optimal Learning via Moderate Deviations Theory

arXiv.org Machine Learning

This paper proposes a statistically optimal approach for learning a function value using a confidence interval in a wide range of models, including general non-parametric estimation of an expected loss described as a stochastic programming problem or various SDE models. More precisely, we develop a systematic construction of highly accurate confidence intervals by using a moderate deviation principle-based approach. It is shown that the proposed confidence intervals are statistically optimal in the sense that they satisfy criteria regarding exponential accuracy, minimality, consistency, mischaracterization probability, and eventual uniformly most accurate (UMA) property. The confidence intervals suggested by this approach are expressed as solutions to robust optimization problems, where the uncertainty is expressed via the underlying moderate deviation rate function induced by the data-generating process. We demonstrate that for many models these optimization problems admit tractable reformulations as finite convex programs even when they are infinite-dimensional.


ISAAC Newton: Input-based Approximate Curvature for Newton's Method

arXiv.org Artificial Intelligence

We present ISAAC (Input-baSed ApproximAte Curvature), a novel method that conditions the gradient using selected second-order information and has an asymptotically vanishing computational overhead, assuming a batch size smaller than the number of neurons. We show that it is possible to compute a good conditioner based on only the input to a respective layer without a substantial computational overhead. The proposed method allows effective training even in small-batch stochastic regimes, which makes it competitive to first-order as well as second-order methods. While second-order optimization methods are traditionally much less explored than first-order methods in large-scale machine learning (ML) applications due to their memory requirements and prohibitive computational cost per iteration, they have recently become more popular in ML mainly due to their fast convergence properties when compared to first-order methods [1]. The expensive computation of an inverse Hessian (also known as pre-conditioning matrix) in the Newton step has also been tackled via estimating the curvature from the change in gradients.