Goto

Collaborating Authors

 Sustik, Matyas A.


BIG & QUIC: Sparse Inverse Covariance Estimation for a Million Variables

Neural Information Processing Systems

The l1-regularized Gaussian maximum likelihood estimator (MLE) has been shown to have strong statistical guarantees in recovering a sparse inverse covariance matrix even under high-dimensional settings. However, it requires solving a difficult non-smooth log-determinant program with number of parameters scaling quadratically with the number of Gaussian variables. State-of-the-art methods thus do not scale to problems with more than 20,000 variables. In this paper, we develop an algorithm BigQUIC, which can solve 1 million dimensional l1-regularized Gaussian MLE problems (which would thus have 1000 billion parameters) using a single machine, with bounded memory. In order to do so, we carefully exploit the underlying structure of the problem. Our innovations include a novel block-coordinate descent method with the blocks chosen via a clustering scheme to minimize repeated computations; and allowing for inexact computation of specific components. In spite of these modifications, we are able to theoretically analyze our procedure and show that BigQUIC can achieve super-linear or even quadratic convergence rates.


Sparse Inverse Covariance Matrix Estimation Using Quadratic Approximation

arXiv.org Machine Learning

The L1-regularized Gaussian maximum likelihood estimator (MLE) has been shown to have strong statistical guarantees in recovering a sparse inverse covariance matrix, or alternatively the underlying graph structure of a Gaussian Markov Random Field, from very limited samples. We propose a novel algorithm for solving the resulting optimization problem which is a regularized log-determinant program. In contrast to recent state-of-the-art methods that largely use first order gradient information, our algorithm is based on Newton's method and employs a quadratic approximation, but with some modifications that leverage the structure of the sparse Gaussian MLE problem. We show that our method is superlinearly convergent, and present experimental results using synthetic and real-world application data that demonstrate the considerable improvements in performance of our method when compared to other state-of-the-art methods.