Sunu, Justin
Dimensionality reduction for acoustic vehicle classification with spectral embedding
Sunu, Justin, Percus, Allon G.
We propose a method for recognizing moving vehicles, using data from roadside audio sensors. This problem has applications ranging widely, from traffic analysis to surveillance. We extract a frequency signature from the audio signal using a short-time Fourier transform, and treat each time window as an individual data point to be classified. By applying a spectral embedding, we decrease the dimensionality of the data sufficiently for K-nearest neighbors to provide accurate vehicle identification.
Unsupervised vehicle recognition using incremental reseeding of acoustic signatures
Sunu, Justin, Hunter, Blake, Percus, Allon G.
Vehicle recognition and classification have broad applications, ranging from traffic flow management to military target identification. We demonstrate an unsupervised method for automated identification of moving vehicles from roadside audio sensors. Using a short-time Fourier transform to decompose audio signals, we treat the frequency signature in each time window as an individual data point. We then use a spectral embedding for dimensionality reduction. Based on the leading eigenvectors, we relate the performance of an incremental reseeding algorithm to that of spectral clustering. We find that incremental reseeding accurately identifies individual vehicles using their acoustic signatures.