Goto

Collaborating Authors

 Sungwoong Kim


Bayesian Model-Agnostic Meta-Learning

Neural Information Processing Systems

Due to the inherent model uncertainty, learning to infer Bayesian posterior from a few-shot dataset is an important step towards robust meta-learning. In this paper, we propose a novel Bayesian model-agnostic meta-learning method. The proposed method combines efficient gradient-based meta-learning with nonparametric variational inference in a principled probabilistic framework. Unlike previous methods, during fast adaptation, the method is capable of learning complex uncertainty structure beyond a simple Gaussian approximation, and during meta-update, a novel Bayesian mechanism prevents meta-level overfitting. Remaining a gradientbased method, it is also the first Bayesian model-agnostic meta-learning method applicable to various tasks including reinforcement learning. Experiment results show the accuracy and robustness of the proposed method in sinusoidal regression, image classification, active learning, and reinforcement learning.



Fast AutoAugment

Neural Information Processing Systems

Data augmentation is an essential technique for improving generalization ability of deep learning models. Recently, AutoAugment [5] has been proposed as an algorithm to automatically search for augmentation policies from a dataset and has significantly enhanced performances on many image recognition tasks. However, its search method requires thousands of GPU hours even for a relatively small dataset. In this paper, we propose an algorithm called Fast AutoAugment that finds effective augmentation policies via a more efficient search strategy based on density matching. In comparison to AutoAugment, the proposed algorithm speeds up the search time by orders of magnitude while achieves comparable performances on image recognition tasks with various models and datasets including CIFAR-10, CIFAR-100, SVHN, and ImageNet.



Fast AutoAugment

Neural Information Processing Systems

Data augmentation is an essential technique for improving generalization ability of deep learning models. Recently, AutoAugment [5] has been proposed as an algorithm to automatically search for augmentation policies from a dataset and has significantly enhanced performances on many image recognition tasks. However, its search method requires thousands of GPU hours even for a relatively small dataset. In this paper, we propose an algorithm called Fast AutoAugment that finds effective augmentation policies via a more efficient search strategy based on density matching. In comparison to AutoAugment, the proposed algorithm speeds up the search time by orders of magnitude while achieves comparable performances on image recognition tasks with various models and datasets including CIFAR-10, CIFAR-100, SVHN, and ImageNet.


Mining GOLD Samples for Conditional GANs

Neural Information Processing Systems

Conditional generative adversarial networks (cGANs) have gained a considerable attention in recent years due to its class-wise controllability and superior quality for complex generation tasks. We introduce a simple yet effective approach to improving cGANs by measuring the discrepancy between the data distribution and the model distribution on given samples. The proposed measure, coined the gap of log-densities (GOLD), provides an effective self-diagnosis for cGANs while being efficiently computed from the discriminator. We propose three applications of the GOLD: example re-weighting, rejection sampling, and active learning, which improve the training, inference, and data selection of cGANs, respectively. Our experimental results demonstrate that the proposed methods outperform corresponding baselines for all three applications on different image datasets.