Goto

Collaborating Authors

 Sung, Flood


Kimi k1.5: Scaling Reinforcement Learning with LLMs

arXiv.org Artificial Intelligence

Language model pretraining with next token prediction has proved effective for scaling compute but is limited to the amount of available training data. Scaling reinforcement learning (RL) unlocks a new axis for the continued improvement of artificial intelligence, with the promise that large language models (LLMs) can scale their training data by learning to explore with rewards. However, prior published work has not produced competitive results. In light of this, we report on the training practice of Kimi k1.5, our latest multi-modal LLM trained with RL, including its RL training techniques, multi-modal data recipes, and infrastructure optimization. Long context scaling and improved policy optimization methods are key ingredients of our approach, which establishes a simplistic, effective RL framework without relying on more complex techniques such as Monte Carlo tree search, value functions, and process reward models. Notably, our system achieves state-of-the-art reasoning performance across multiple benchmarks and modalities -- e.g., 77.5 on AIME, 96.2 on MATH 500, 94-th percentile on Codeforces, 74.9 on MathVista -- matching OpenAI's o1. Moreover, we present effective long2short methods that use long-CoT techniques to improve short-CoT models, yielding state-of-the-art short-CoT reasoning results -- e.g., 60.8 on AIME, 94.6 on MATH500, 47.3 on LiveCodeBench -- outperforming existing short-CoT models such as GPT-4o and Claude Sonnet 3.5 by a large margin (up to +550%).


More is not always better? Enhancing Many-Shot In-Context Learning with Differentiated and Reweighting Objectives

arXiv.org Artificial Intelligence

Large language models (LLMs) excel at few-shot in-context learning (ICL) without requiring parameter updates. However, as the number of ICL demonstrations increases from a few to many, performance tends to plateau and eventually decline. We identify two primary causes for this trend: the suboptimal negative log-likelihood (NLL) optimization objective and the incremental data noise. To address these issues, we introduce DrICL, a novel optimization method that enhances model performance through Differentiated Learning and advantage-based Reweighting objectives. Globally, DrICL utilizes differentiated learning to optimize the NLL objective, ensuring that many-shot performance surpasses zero-shot levels. Locally, it dynamically adjusts the weighting of many-shot demonstrations by leveraging cumulative advantages inspired by reinforcement learning, thereby improving generalization. This approach allows the model to handle varying numbers of shots effectively, mitigating the impact of noisy data. Recognizing the lack of multi-task datasets with diverse many-shot distributions, we develop the Many-Shot ICL Benchmark (ICL-50)-a large-scale benchmark of 50 tasks that cover shot numbers from 1 to 350 within sequences of up to 8,000 tokens-for fine-tuning purposes. ICL-50 facilitates the evaluation of many-shot ICL strategies across seven prominent NLP tasks and 50 distinct datasets. Experimental results demonstrate that LLMs enhanced with DrICL achieve significant improvements in many-shot setups across various tasks, including both in-domain and out-of-domain scenarios. We release the code and benchmark dataset hoping to facilitate further research in many-shot ICL.


Thinking Before Running! Efficient Code Generation with Thorough Exploration and Optimal Refinement

arXiv.org Artificial Intelligence

Code generation is crucial in software engineering for automating the coding process efficiently. While test-time computation methods show promise, they suffer from high latency due to multiple computation rounds. To overcome this, we introduce ThinkCoder, a framework that combines thorough exploration with optimal refinement. The exploration phase diversifies the solution space by searching for potential solutions, followed by a refinement phase that enhances precision. This approach allows us to select the best solution through careful consideration before taking action, avoiding excessive trial and error. To further minimize test-time computation overhead, we introduce preference-driven optimization with Reinforced Self-Training (ReST), which uses exploration trajectories from ThinkCoder to guide LLM's evolution. By learning preferences, this approach improves LLM's exploration efficiency, reducing computational costs while maintaining accuracy. ThinkCoder boosts the performance of multiple base LLMs, excelling on benchmarks like HumanEval and MBPP. Compared to SOTA models, it improves Pass@1 by 1.5\% over MapCoder with just 21.7\% of the computation cost. Against AgentCoder, ThinkCoder achieves a 0.6\% higher Pass@1 after 2 rounds, outperforming AgentCoder's 5 rounds. Additionally, ReST with success trajectories enhances efficiency, allowing models like LLaMA2-7B to achieve competitive results using only 20\% of the computational resources. These results highlight the framework's effectiveness and scalability.