Sun, Zhongxiang
ReARTeR: Retrieval-Augmented Reasoning with Trustworthy Process Rewarding
Sun, Zhongxiang, Wang, Qipeng, Yu, Weijie, Zang, Xiaoxue, Zheng, Kai, Xu, Jun, Zhang, Xiao, Yang, Song, Li, Han
Retrieval-Augmented Generation (RAG) systems for Large Language Models (LLMs) hold promise in knowledge-intensive tasks but face limitations in complex multi-step reasoning. While recent methods have integrated RAG with chain-of-thought reasoning or test-time search using Process Reward Models (PRMs), these approaches encounter challenges such as a lack of explanations, bias in PRM training data, early-step bias in PRM scores, and insufficient post-training optimization of reasoning potential. To address these issues, we propose Retrieval-Augmented Reasoning through Trustworthy Process Rewarding (ReARTeR), a framework that enhances RAG systems' reasoning capabilities through post-training and test-time scaling. At test time, ReARTeR introduces Trustworthy Process Rewarding via a Process Reward Model for accurate scalar scoring and a Process Explanation Model (PEM) for generating natural language explanations, enabling step refinement. During post-training, it utilizes Monte Carlo Tree Search guided by Trustworthy Process Rewarding to collect high-quality step-level preference data, optimized through Iterative Preference Optimization. ReARTeR addresses three core challenges: (1) misalignment between PRM and PEM, tackled through off-policy preference learning; (2) bias in PRM training data, mitigated by balanced annotation methods and stronger annotations for challenging examples; and (3) early-step bias in PRM, resolved through a temporal-difference-based look-ahead search strategy. Experimental results on multi-step reasoning benchmarks demonstrate significant improvements, underscoring ReARTeR's potential to advance the reasoning capabilities of RAG systems.
Trigger$^3$: Refining Query Correction via Adaptive Model Selector
Zhang, Kepu, Sun, Zhongxiang, Zhang, Xiao, Zang, Xiaoxue, Zheng, Kai, Song, Yang, Xu, Jun
In search scenarios, user experience can be hindered by erroneous queries due to typos, voice errors, or knowledge gaps. Therefore, query correction is crucial for search engines. Current correction models, usually small models trained on specific data, often struggle with queries beyond their training scope or those requiring contextual understanding. While the advent of Large Language Models (LLMs) offers a potential solution, they are still limited by their pre-training data and inference cost, particularly for complex queries, making them not always effective for query correction. To tackle these, we propose Trigger$^3$, a large-small model collaboration framework that integrates the traditional correction model and LLM for query correction, capable of adaptively choosing the appropriate correction method based on the query and the correction results from the traditional correction model and LLM. Trigger$^3$ first employs a correction trigger to filter out correct queries. Incorrect queries are then corrected by the traditional correction model. If this fails, an LLM trigger is activated to call the LLM for correction. Finally, for queries that no model can correct, a fallback trigger decides to return the original query. Extensive experiments demonstrate Trigger$^3$ outperforms correction baselines while maintaining efficiency.
ReDeEP: Detecting Hallucination in Retrieval-Augmented Generation via Mechanistic Interpretability
Sun, Zhongxiang, Zang, Xiaoxue, Zheng, Kai, Song, Yang, Xu, Jun, Zhang, Xiao, Yu, Weijie, Song, Yang, Li, Han
Retrieval-Augmented Generation (RAG) models are designed to incorporate external knowledge, reducing hallucinations caused by insufficient parametric (internal) knowledge. However, even with accurate and relevant retrieved content, RAG models can still produce hallucinations by generating outputs that conflict with the retrieved information. Detecting such hallucinations requires disentangling how Large Language Models (LLMs) utilize external and parametric knowledge. Current detection methods often focus on one of these mechanisms or without decoupling their intertwined effects, making accurate detection difficult. In this paper, we investigate the internal mechanisms behind hallucinations in RAG scenarios. We discover hallucinations occur when the Knowledge FFNs in LLMs overemphasize parametric knowledge in the residual stream, while Copying Heads fail to effectively retain or integrate external knowledge from retrieved content. Based on these findings, we propose ReDeEP, a novel method that detects hallucinations by decoupling LLM's utilization of external context and parametric knowledge. Our experiments show that ReDeEP significantly improves RAG hallucination detection accuracy. Additionally, we introduce AARF, which mitigates hallucinations by modulating the contributions of Knowledge FFNs and Copying Heads.
LargePiG: Your Large Language Model is Secretly a Pointer Generator
Sun, Zhongxiang, Si, Zihua, Zang, Xiaoxue, Zheng, Kai, Song, Yang, Zhang, Xiao, Xu, Jun
Recent research on query generation has focused on using Large Language Models (LLMs), which despite bringing state-of-the-art performance, also introduce issues with hallucinations in the generated queries. In this work, we introduce relevance hallucination and factuality hallucination as a new typology for hallucination problems brought by query generation based on LLMs. We propose an effective way to separate content from form in LLM-generated queries, which preserves the factual knowledge extracted and integrated from the inputs and compiles the syntactic structure, including function words, using the powerful linguistic capabilities of the LLM. Specifically, we introduce a model-agnostic and training-free method that turns the Large Language Model into a Pointer-Generator (LargePiG), where the pointer attention distribution leverages the LLM's inherent attention weights, and the copy probability is derived from the difference between the vocabulary distribution of the model's high layers and the last layer. To validate the effectiveness of LargePiG, we constructed two datasets for assessing the hallucination problems in query generation, covering both document and video scenarios. Empirical studies on various LLMs demonstrated the superiority of LargePiG on both datasets. Additional experiments also verified that LargePiG could reduce hallucination in large vision language models and improve the accuracy of document-based question-answering and factuality evaluation tasks.
Effective In-Context Example Selection through Data Compression
Sun, Zhongxiang, Zhang, Kepu, Wang, Haoyu, Zhang, Xiao, Xu, Jun
In-context learning has been extensively validated in large language models. However, the mechanism and selection strategy for in-context example selection, which is a crucial ingredient in this approach, lacks systematic and in-depth research. In this paper, we propose a data compression approach to the selection of in-context examples. We introduce a two-stage method that can effectively choose relevant examples and retain sufficient information about the training dataset within the in-context examples. Our method shows a significant improvement of an average of 5.90% across five different real-world datasets using four language models.
Exploring the Nexus of Large Language Models and Legal Systems: A Short Survey
Qin, Weicong, Sun, Zhongxiang
With the advancement of Artificial Intelligence (AI) and Large Language Models (LLMs), there is a profound transformation occurring in the realm of natural language processing tasks within the legal domain. The capabilities of LLMs are increasingly demonstrating unique roles in the legal sector, bringing both distinctive benefits and various challenges. This survey delves into the synergy between LLMs and the legal system, such as their applications in tasks like legal text comprehension, case retrieval, and analysis. Furthermore, this survey highlights key challenges faced by LLMs in the legal domain, including bias, interpretability, and ethical considerations, as well as how researchers are addressing these issues. The survey showcases the latest advancements in fine-tuned legal LLMs tailored for various legal systems, along with legal datasets available for fine-tuning LLMs in various languages. Additionally, it proposes directions for future research and development.
When Search Meets Recommendation: Learning Disentangled Search Representation for Recommendation
Si, Zihua, Sun, Zhongxiang, Zhang, Xiao, Xu, Jun, Zang, Xiaoxue, Song, Yang, Gai, Kun, Wen, Ji-Rong
Modern online service providers such as online shopping platforms often provide both search and recommendation (S&R) services to meet different user needs. Rarely has there been any effective means of incorporating user behavior data from both S&R services. Most existing approaches either simply treat S&R behaviors separately, or jointly optimize them by aggregating data from both services, ignoring the fact that user intents in S&R can be distinctively different. In our paper, we propose a Search-Enhanced framework for the Sequential Recommendation (SESRec) that leverages users' search interests for recommendation, by disentangling similar and dissimilar representations within S&R behaviors. Specifically, SESRec first aligns query and item embeddings based on users' query-item interactions for the computations of their similarities. Two transformer encoders are used to learn the contextual representations of S&R behaviors independently. Then a contrastive learning task is designed to supervise the disentanglement of similar and dissimilar representations from behavior sequences of S&R. Finally, we extract user interests by the attention mechanism from three perspectives, i.e., the contextual representations, the two separated behaviors containing similar and dissimilar interests. Extensive experiments on both industrial and public datasets demonstrate that SESRec consistently outperforms state-of-the-art models. Empirical studies further validate that SESRec successfully disentangle similar and dissimilar user interests from their S&R behaviors.
A Short Survey of Viewing Large Language Models in Legal Aspect
Sun, Zhongxiang
Large language models (LLMs) have transformed many fields, including natural language processing, computer vision, and reinforcement learning. These models have also made a significant impact in the field of law, where they are being increasingly utilized to automate various legal tasks, such as legal judgement prediction, legal document analysis, and legal document writing. However, the integration of LLMs into the legal field has also raised several legal problems, including privacy concerns, bias, and explainability. In this survey, we explore the integration of LLMs into the field of law. We discuss the various applications of LLMs in legal tasks, examine the legal challenges that arise from their use, and explore the data resources that can be used to specialize LLMs in the legal domain. Finally, we discuss several promising directions and conclude this paper. By doing so, we hope to provide an overview of the current state of LLMs in law and highlight the potential benefits and challenges of their integration.