Sun, Zhenan
UncertaintyRAG: Span-Level Uncertainty Enhanced Long-Context Modeling for Retrieval-Augmented Generation
Li, Zixuan, Xiong, Jing, Ye, Fanghua, Zheng, Chuanyang, Wu, Xun, Lu, Jianqiao, Wan, Zhongwei, Liang, Xiaodan, Li, Chengming, Sun, Zhenan, Kong, Lingpeng, Wong, Ngai
We present UncertaintyRAG, a novel approach for long-context Retrieval-Augmented Generation (RAG) that utilizes Signal-to-Noise Ratio (SNR)-based span uncertainty to estimate similarity between text chunks. This span uncertainty enhances model calibration, improving robustness and mitigating semantic inconsistencies introduced by random chunking. Leveraging this insight, we propose an efficient unsupervised learning technique to train the retrieval model, alongside an effective data sampling and scaling strategy. UncertaintyRAG outperforms baselines by 2.03% on LLaMA-2-7B, achieving state-of-the-art results while using only 4% of the training data compared to other advanced open-source retrieval models under distribution shift settings. Our method demonstrates strong calibration through span uncertainty, leading to improved generalization and robustness in long-context RAG tasks. Additionally, UncertaintyRAG provides a lightweight retrieval model that can be integrated into any large language model with varying context window lengths, without the need for fine-tuning, showcasing the flexibility of our approach.
Rotation and Permutation for Advanced Outlier Management and Efficient Quantization of LLMs
Lin, Haokun, Xu, Haobo, Wu, Yichen, Cui, Jingzhi, Zhang, Yingtao, Mou, Linzhan, Song, Linqi, Sun, Zhenan, Wei, Ying
Quantizing large language models (LLMs) presents significant challenges, primarily due to outlier activations that compromise the efficiency of low-bit representation. Traditional approaches mainly focus on solving Normal Outliers-activations with consistently high magnitudes across all tokens. However, these techniques falter when dealing with Massive Outliers, which are significantly higher in value and often cause substantial performance losses during low-bit quantization. In this study, we propose DuQuant, an innovative quantization strategy employing rotation and permutation transformations to more effectively eliminate both types of outliers. Initially, DuQuant constructs rotation matrices informed by specific outlier dimensions, redistributing these outliers across adjacent channels within different rotation blocks. Subsequently, a zigzag permutation is applied to ensure a balanced distribution of outliers among blocks, minimizing block-wise variance. An additional rotation further enhances the smoothness of the activation landscape, thereby improving model performance. DuQuant streamlines the quantization process and demonstrates superior outlier management, achieving top-tier results in multiple tasks with various LLM architectures even under 4-bit weight-activation quantization. Our code is available at https://github.com/Hsu1023/DuQuant.
MoPE-CLIP: Structured Pruning for Efficient Vision-Language Models with Module-wise Pruning Error Metric
Lin, Haokun, Bai, Haoli, Liu, Zhili, Hou, Lu, Sun, Muyi, Song, Linqi, Wei, Ying, Sun, Zhenan
Vision-language pre-trained models have achieved impressive performance on various downstream tasks. However, their large model sizes hinder their utilization on platforms with limited computational resources. We find that directly using smaller pre-trained models and applying magnitude-based pruning on CLIP models leads to inflexibility and inferior performance. Recent efforts for VLP compression either adopt uni-modal compression metrics resulting in limited performance or involve costly mask-search processes with learnable masks. In this paper, we first propose the Module-wise Pruning Error (MoPE) metric, accurately assessing CLIP module importance by performance decline on cross-modal tasks. Using the MoPE metric, we introduce a unified pruning framework applicable to both pre-training and task-specific fine-tuning compression stages. For pre-training, MoPE-CLIP effectively leverages knowledge from the teacher model, significantly reducing pre-training costs while maintaining strong zero-shot capabilities. For fine-tuning, consecutive pruning from width to depth yields highly competitive task-specific models. Extensive experiments in two stages demonstrate the effectiveness of the MoPE metric, and MoPE-CLIP outperforms previous state-of-the-art VLP compression methods.
A Survey on Self-supervised Learning: Algorithms, Applications, and Future Trends
Gui, Jie, Chen, Tuo, Zhang, Jing, Cao, Qiong, Sun, Zhenan, Luo, Hao, Tao, Dacheng
Deep supervised learning algorithms typically require a large volume of labeled data to achieve satisfactory performance. However, the process of collecting and labeling such data can be expensive and time-consuming. Self-supervised learning (SSL), a subset of unsupervised learning, aims to learn discriminative features from unlabeled data without relying on human-annotated labels. SSL has garnered significant attention recently, leading to the development of numerous related algorithms. However, there is a dearth of comprehensive studies that elucidate the connections and evolution of different SSL variants. This paper presents a review of diverse SSL methods, encompassing algorithmic aspects, application domains, three key trends, and open research questions. Firstly, we provide a detailed introduction to the motivations behind most SSL algorithms and compare their commonalities and differences. Secondly, we explore representative applications of SSL in domains such as image processing, computer vision, and natural language processing. Lastly, we discuss the three primary trends observed in SSL research and highlight the open questions that remain. A curated collection of valuable resources can be accessed at https://github.com/guijiejie/SSL.
MOST-Net: A Memory Oriented Style Transfer Network for Face Sketch Synthesis
Ji, Fan, Sun, Muyi, Qi, Xingqun, Li, Qi, Sun, Zhenan
Face sketch synthesis has been widely used in multi-media entertainment and law enforcement. Despite the recent developments in deep neural networks, accurate and realistic face sketch synthesis is still a challenging task due to the diversity and complexity of human faces. Current image-to-image translation-based face sketch synthesis frequently encounters over-fitting problems when it comes to small-scale datasets. To tackle this problem, we present an end-to-end Memory Oriented Style Transfer Network (MOST-Net) for face sketch synthesis which can produce high-fidelity sketches with limited data. Specifically, an external self-supervised dynamic memory module is introduced to capture the domain alignment knowledge in the long term. In this way, our proposed model could obtain the domain-transfer ability by establishing the durable relationship between faces and corresponding sketches on the feature level. Furthermore, we design a novel Memory Refinement Loss (MR Loss) for feature alignment in the memory module, which enhances the accuracy of memory slots in an unsupervised manner. Extensive experiments on the CUFS and the CUFSF datasets show that our MOST-Net achieves state-of-the-art performance, especially in terms of the Structural Similarity Index(SSIM).
META: Mimicking Embedding via oThers' Aggregation for Generalizable Person Re-identification
Xu, Boqiang, Liang, Jian, He, Lingxiao, Sun, Zhenan
Domain generalizable (DG) person re-identification (ReID) aims to test across unseen domains without access to the target domain data at training time, which is a realistic but challenging problem. In contrast to methods assuming an identical model for different domains, Mixture of Experts (MoE) exploits multiple domain-specific networks for leveraging complementary information between domains, obtaining impressive results. However, prior MoE-based DG ReID methods suffer from a large model size with the increase of the number of source domains, and most of them overlook the exploitation of domain-invariant characteristics. To handle the two issues above, this paper presents a new approach called Mimicking Embedding via oThers' Aggregation (META) for DG ReID. To avoid the large model size, experts in META do not add a branch network for each source domain but share all the parameters except for the batch normalization layers. Besides multiple experts, META leverages Instance Normalization (IN) and introduces it into a global branch to pursue invariant features across domains. Meanwhile, META considers the relevance of an unseen target sample and source domains via normalization statistics and develops an aggregation network to adaptively integrate multiple experts for mimicking unseen target domain. Benefiting from a proposed consistency loss and an episodic training algorithm, we can expect META to mimic embedding for a truly unseen target domain. Extensive experiments verify that META surpasses state-of-the-art DG ReID methods by a large margin.
A Unified Framework for Biphasic Facial Age Translation with Noisy-Semantic Guided Generative Adversarial Networks
Sun, Muyi, Wang, Jian, Liu, Yunfan, Li, Qi, Sun, Zhenan
Biphasic facial age translation aims at predicting the appearance of the input face at any age. Facial age translation has received considerable research attention in the last decade due to its practical value in cross-age face recognition and various entertainment applications. However, most existing methods model age changes between holistic images, regardless of the human face structure and the age-changing patterns of individual facial components. Consequently, the lack of semantic supervision will cause infidelity of generated faces in detail. To this end, we propose a unified framework for biphasic facial age translation with noisy-semantic guided generative adversarial networks. Structurally, we project the class-aware noisy semantic layouts to soft latent maps for the following injection operation on the individual facial parts. In particular, we introduce two sub-networks, ProjectionNet and ConstraintNet. ProjectionNet introduces the low-level structural semantic information with noise map and produces soft latent maps. ConstraintNet disentangles the high-level spatial features to constrain the soft latent maps, which endows more age-related context into the soft latent maps. Specifically, attention mechanism is employed in ConstraintNet for feature disentanglement. Meanwhile, in order to mine the strongest mapping ability of the network, we embed two types of learning strategies in the training procedure, supervised self-driven generation and unsupervised condition-driven cycle-consistent generation. As a result, extensive experiments conducted on MORPH and CACD datasets demonstrate the prominent ability of our proposed method which achieves state-of-the-art performance.
Supervised Discrete Hashing with Relaxation
Gui, Jie, Liu, Tongliang, Sun, Zhenan, Tao, Dacheng, Tan, Tieniu
Data-dependent hashing has recently attracted attention due to being able to support efficient retrieval and storage of high-dimensional data such as documents, images, and videos. In this paper, we propose a novel learning-based hashing method called "Supervised Discrete Hashing with Relaxation" (SDHR) based on "Supervised Discrete Hashing" (SDH). SDH uses ordinary least squares regression and traditional zero-one matrix encoding of class label information as the regression target (code words), thus fixing the regression target. In SDHR, the regression target is instead optimized. The optimized regression target matrix satisfies a large margin constraint for correct classification of each example. Compared with SDH, which uses the traditional zero-one matrix, SDHR utilizes the learned regression target matrix and, therefore, more accurately measures the classification error of the regression model and is more flexible. As expected, SDHR generally outperforms SDH. Experimental results on two large-scale image datasets (CIFAR-10 and MNIST) and a large-scale and challenging face dataset (FRGC) demonstrate the effectiveness and efficiency of SDHR.
Fast Supervised Discrete Hashing
Gui, Jie, Liu, Tongliang, Sun, Zhenan, Tao, Dacheng, Tan, Tieniu
Learning-based hashing algorithms are ``hot topics" because they can greatly increase the scale at which existing methods operate. In this paper, we propose a new learning-based hashing method called ``fast supervised discrete hashing" (FSDH) based on ``supervised discrete hashing" (SDH). Regressing the training examples (or hash code) to the corresponding class labels is widely used in ordinary least squares regression. Rather than adopting this method, FSDH uses a very simple yet effective regression of the class labels of training examples to the corresponding hash code to accelerate the algorithm. To the best of our knowledge, this strategy has not previously been used for hashing. Traditional SDH decomposes the optimization into three sub-problems, with the most critical sub-problem - discrete optimization for binary hash codes - solved using iterative discrete cyclic coordinate descent (DCC), which is time-consuming. However, FSDH has a closed-form solution and only requires a single rather than iterative hash code-solving step, which is highly efficient. Furthermore, FSDH is usually faster than SDH for solving the projection matrix for least squares regression, making FSDH generally faster than SDH. For example, our results show that FSDH is about 12-times faster than SDH when the number of hashing bits is 128 on the CIFAR-10 data base, and FSDH is about 151-times faster than FastHash when the number of hashing bits is 64 on the MNIST data-base. Our experimental results show that FSDH is not only fast, but also outperforms other comparative methods.
IntroVAE: Introspective Variational Autoencoders for Photographic Image Synthesis
Huang, Huaibo, li, zhihang, He, Ran, Sun, Zhenan, Tan, Tieniu
We present a novel introspective variational autoencoder (IntroVAE) model for synthesizing high-resolution photographic images. IntroVAE is capable of self-evaluating the quality of its generated samples and improving itself accordingly. Its inference and generator models are jointly trained in an introspective way. On one hand, the generator is required to reconstruct the input images from the noisy outputs of the inference model as normal VAEs. On the other hand, the inference model is encouraged to classify between the generated and real samples while the generator tries to fool it as GANs. These two famous generative frameworks are integrated in a simple yet efficient single-stream architecture that can be trained in a single stage. IntroVAE preserves the advantages of VAEs, such as stable training and nice latent manifold. Unlike most other hybrid models of VAEs and GANs, IntroVAE requires no extra discriminators, because the inference model itself serves as a discriminator to distinguish between the generated and real samples. Experiments demonstrate that our method produces high-resolution photo-realistic images (e.g., CELEBA images at \(1024^{2}\)), which are comparable to or better than the state-of-the-art GANs.