Sun, Zeye
Order Doesn't Matter, But Reasoning Does: Training LLMs with Order-Centric Augmentation
He, Qianxi, He, Qianyu, Liang, Jiaqing, Xiao, Yanghua, Zhou, Weikang, Sun, Zeye, Yu, Fei
Logical reasoning is essential for large language models (LLMs) to ensure accurate and coherent inference. However, LLMs struggle with reasoning order variations and fail to generalize across logically equivalent transformations. LLMs often rely on fixed sequential patterns rather than true logical understanding. To address this issue, we introduce an order-centric data augmentation framework based on commutativity in logical reasoning. We first randomly shuffle independent premises to introduce condition order augmentation. For reasoning steps, we construct a directed acyclic graph (DAG) to model dependencies between steps, which allows us to identify valid reorderings of steps while preserving logical correctness. By leveraging order-centric augmentations, models can develop a more flexible and generalized reasoning process. Finally, we conduct extensive experiments across multiple logical reasoning benchmarks, demonstrating that our method significantly enhances LLMs' reasoning performance and adaptability to diverse logical structures. We release our codes and augmented data in https://anonymous.4open.science/r/Order-Centric-Data-Augmentation-822C/.
Step-by-Step Mastery: Enhancing Soft Constraint Following Ability of Large Language Models
Ren, Qingyu, Zeng, Jie, He, Qianyu, Liang, Jiaqing, Xiao, Yanghua, Zhou, Weikang, Sun, Zeye, Yu, Fei
It is crucial for large language models (LLMs) to follow instructions that involve multiple constraints. However, soft constraints are semantically related and difficult to verify through automated methods. These constraints remain a significant challenge for LLMs. To enhance the ability of LLMs to follow soft constraints, we initially design a pipeline to obtain high-quality outputs automatically. Additionally, to fully utilize the acquired data, we introduce a training paradigm based on curriculum learning. We experimentally evaluate the effectiveness of our methods in improving LLMs' soft constraint following ability and analyze the factors driving the improvements. The datasets and code are publicly available at https://github.com/Rainier-rq/FollowSoftConstraints.