Goto

Collaborating Authors

 Sun, Yi


Automated Detection of Epileptic Spikes and Seizures Incorporating a Novel Spatial Clustering Prior

arXiv.org Artificial Intelligence

A Magnetoencephalography (MEG) time-series recording consists of multi-channel signals collected by superconducting sensors, with each signal's intensity reflecting magnetic field changes over time at the sensor location. Automating epileptic MEG spike detection significantly reduces manual assessment time and effort, yielding substantial clinical benefits. Existing research addresses MEG spike detection by encoding neural network inputs with signals from all channel within a time segment, followed by classification. However, these methods overlook simultaneous spiking occurred from nearby sensors. We introduce a simple yet effective paradigm that first clusters MEG channels based on their sensor's spatial position. Next, a novel convolutional input module is designed to integrate the spatial clustering and temporal changes of the signals. This module is fed into a custom MEEG-ResNet3D developed by the authors, which learns to extract relevant features and classify the input as a spike clip or not. Our method achieves an F1 score of 94.73% on a large real-world MEG dataset Sanbo-CMR collected from two centers, outperforming state-of-the-art approaches by 1.85%. Moreover, it demonstrates efficacy and stability in the Electroencephalographic (EEG) seizure detection task, yielding an improved weighted F1 score of 1.4% compared to current state-of-the-art techniques evaluated on TUSZ, whch is the largest EEG seizure dataset.


ChainStream: An LLM-based Framework for Unified Synthetic Sensing

arXiv.org Artificial Intelligence

Many applications demand context sensing to offer personalized and timely services. Yet, developing sensing programs can be challenging for developers and using them is privacy-concerning for end-users. In this paper, we propose to use natural language as the unified interface to process personal data and sense user context, which can effectively ease app development and make the data pipeline more transparent. Our work is inspired by large language models (LLMs) and other generative models, while directly applying them does not solve the problem - letting the model directly process the data cannot handle complex sensing requests and letting the model write the data processing program suffers error-prone code generation. We address the problem with 1) a unified data processing framework that makes context-sensing programs simpler and 2) a feedback-guided query optimizer that makes data query more informative. To evaluate the performance of natural language-based context sensing, we create a benchmark that contains 133 context sensing tasks. Extensive evaluation has shown that our approach is able to automatically solve the context-sensing tasks efficiently and precisely. The code is opensourced at https://github.com/MobileLLM/ChainStream.


CoActionGraphRec: Sequential Multi-Interest Recommendations Using Co-Action Graphs

arXiv.org Artificial Intelligence

There are unique challenges to developing item recommender systems for e-commerce platforms like eBay due to sparse data and diverse user interests. While rich user-item interactions are important, eBay's data sparsity exceeds other e-commerce sites by an order of magnitude. To address this challenge, we propose CoActionGraphRec (CAGR), a text based two-tower deep learning model (Item Tower and User Tower) utilizing co-action graph layers. In order to enhance user and item representations, a graph-based solution tailored to eBay's environment is utilized. For the Item Tower, we represent each item using its co-action items to capture collaborative signals in a co-action graph that is fully leveraged by the graph neural network component. For the User Tower, we build a fully connected graph of each user's behavior sequence, with edges encoding pairwise relationships. Furthermore, an explicit interaction module learns representations capturing behavior interactions. Extensive offline and online A/B test experiments demonstrate the effectiveness of our proposed approach and results show improved performance over state-of-the-art methods on key metrics.


Behavior evolution-inspired approach to walking gait reinforcement training for quadruped robots

arXiv.org Artificial Intelligence

Reinforcement learning method is extremely competitive in gait generation techniques for quadrupedal robot, which is mainly due to the fact that stochastic exploration in reinforcement training is beneficial to achieve an autonomous gait. Nevertheless, although incremental reinforcement learning is employed to improve training success and movement smoothness by relying on the continuity inherent during limb movements, challenges remain in adapting gait policy to diverse terrain and external disturbance. Inspired by the association between reinforcement learning and the evolution of animal motion behavior, a self-improvement mechanism for reference gait is introduced in this paper to enable incremental learning of action and self-improvement of reference action together to imitate the evolution of animal motion behavior. Further, a new framework for reinforcement training of quadruped gait is proposed. In this framework, genetic algorithm is specifically adopted to perform global probabilistic search for the initial value of the arbitrary foot trajectory to update the reference trajectory with better fitness. Subsequently, the improved reference gait is used for incremental reinforcement learning of gait. The above process is repeatedly and alternatively executed to finally train the gait policy. The analysis considering terrain, model dimensions, and locomotion condition is presented in detail based on simulation, and the results show that the framework is significantly more adaptive to terrain compared to regular incremental reinforcement learning.


Human-like object concept representations emerge naturally in multimodal large language models

arXiv.org Artificial Intelligence

The conceptualization and categorization of natural objects in the human mind have long intrigued cognitive scientists and neuroscientists, offering crucial insights into human perception and cognition. Recently, the rapid development of Large Language Models (LLMs) has raised the attractive question of whether these models can also develop human-like object representations through exposure to vast amounts of linguistic and multimodal data. In this study, we combined behavioral and neuroimaging analysis methods to uncover how the object concept representations in LLMs correlate with those of humans. By collecting large-scale datasets of 4.7 million triplet judgments from LLM and Multimodal LLM (MLLM), we were able to derive low-dimensional embeddings that capture the underlying similarity structure of 1,854 natural objects. The resulting 66-dimensional embeddings were found to be highly stable and predictive, and exhibited semantic clustering akin to human mental representations. Interestingly, the interpretability of the dimensions underlying these embeddings suggests that LLM and MLLM have developed human-like conceptual representations of natural objects. Further analysis demonstrated strong alignment between the identified model embeddings and neural activity patterns in many functionally defined brain ROIs (e.g., EBA, PPA, RSC and FFA). This provides compelling evidence that the object representations in LLMs, while not identical to those in the human, share fundamental commonalities that reflect key schemas of human conceptual knowledge. This study advances our understanding of machine intelligence and informs the development of more human-like artificial cognitive systems.


On the estimation rate of Bayesian PINN for inverse problems

arXiv.org Machine Learning

Solving partial differential equations (PDEs) and their inverse problems using Physics-informed neural networks (PINNs) is a rapidly growing approach in the physics and machine learning community. Although several architectures exist for PINNs that work remarkably in practice, our theoretical understanding of their performances is somewhat limited. In this work, we study the behavior of a Bayesian PINN estimator of the solution of a PDE from $n$ independent noisy measurement of the solution. We focus on a class of equations that are linear in their parameters (with unknown coefficients $\theta_\star$). We show that when the partial differential equation admits a classical solution (say $u_\star$), differentiable to order $\beta$, the mean square error of the Bayesian posterior mean is at least of order $n^{-2\beta/(2\beta + d)}$. Furthermore, we establish a convergence rate of the linear coefficients of $\theta_\star$ depending on the order of the underlying differential operator. Last but not least, our theoretical results are validated through extensive simulations.


Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context

arXiv.org Artificial Intelligence

In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February version on the great majority of capabilities and benchmarks; (2) Gemini 1.5 Flash, a more lightweight variant designed for efficiency with minimal regression in quality. Gemini 1.5 models achieve near-perfect recall on long-context retrieval tasks across modalities, improve the state-of-the-art in long-document QA, long-video QA and long-context ASR, and match or surpass Gemini 1.0 Ultra's state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5's long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 3.0 (200k) and GPT-4 Turbo (128k). Finally, we highlight real-world use cases, such as Gemini 1.5 collaborating with professionals on completing their tasks achieving 26 to 75% time savings across 10 different job categories, as well as surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content.


Cross-Category Functional Grasp Tansfer

arXiv.org Artificial Intelligence

Generating grasps for a dexterous hand often requires numerous grasping annotations. However, annotating high DoF dexterous hand poses is quite challenging. Especially for functional grasps, the grasp pose must be convenient for subsequent manipulation tasks. This prompt us to explore how people achieve manipulations on new objects based on past grasp experiences. We find that when grasping new items, people are adept at discovering and leveraging various similarities between objects, including shape, layout, and grasp type. Considering this, we analyze and collect grasp-related similarity relationships among 51 common tool-like object categories and annotate semantic grasp representation for 1768 objects. These objects are connected through similarities to form a knowledge graph, which helps infer our proposed cross-category functional grasp synthesis. Through extensive experiments, we demonstrate that the grasp-related knowledge indeed contributed to achieving functional grasp transfer across unknown or entirely new categories of objects. We will publicly release the dataset and code to facilitate future research.


The Codecfake Dataset and Countermeasures for the Universally Detection of Deepfake Audio

arXiv.org Artificial Intelligence

With the proliferation of Audio Language Model (ALM) based deepfake audio, there is an urgent need for generalized detection methods. ALM-based deepfake audio currently exhibits widespread, high deception, and type versatility, posing a significant challenge to current audio deepfake detection (ADD) models trained solely on vocoded data. To effectively detect ALM-based deepfake audio, we focus on the mechanism of the ALM-based audio generation method, the conversion from neural codec to waveform. We initially construct the Codecfake dataset, an open-source large-scale dataset, including 2 languages, over 1M audio samples, and various test conditions, focus on ALM-based audio detection. As countermeasure, to achieve universal detection of deepfake audio and tackle domain ascent bias issue of original SAM, we propose the CSAM strategy to learn a domain balanced and generalized minima. In our experiments, we first demonstrate that ADD model training with the Codecfake dataset can effectively detects ALM-based audio. Furthermore, our proposed generalization countermeasure yields the lowest average Equal Error Rate (EER) of 0.616% across all test conditions compared to baseline models. The dataset and associated code are available online.


Text2Grasp: Grasp synthesis by text prompts of object grasping parts

arXiv.org Artificial Intelligence

The hand plays a pivotal role in human ability to grasp and manipulate objects and controllable grasp synthesis is the key for successfully performing downstream tasks. Existing methods that use human intention or task-level language as control signals for grasping inherently face ambiguity. To address this challenge, we propose a grasp synthesis method guided by text prompts of object grasping parts, Text2Grasp, which provides more precise control. Specifically, we present a two-stage method that includes a text-guided diffusion model TextGraspDiff to first generate a coarse grasp pose, then apply a hand-object contact optimization process to ensure both plausibility and diversity. Furthermore, by leveraging Large Language Model, our method facilitates grasp synthesis guided by task-level and personalized text descriptions without additional manual annotations. Extensive experiments demonstrate that our method achieves not only accurate part-level grasp control but also comparable performance in grasp quality.