Sun, Xiaowen
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
DeepSeek-AI, null, Guo, Daya, Yang, Dejian, Zhang, Haowei, Song, Junxiao, Zhang, Ruoyu, Xu, Runxin, Zhu, Qihao, Ma, Shirong, Wang, Peiyi, Bi, Xiao, Zhang, Xiaokang, Yu, Xingkai, Wu, Yu, Wu, Z. F., Gou, Zhibin, Shao, Zhihong, Li, Zhuoshu, Gao, Ziyi, Liu, Aixin, Xue, Bing, Wang, Bingxuan, Wu, Bochao, Feng, Bei, Lu, Chengda, Zhao, Chenggang, Deng, Chengqi, Zhang, Chenyu, Ruan, Chong, Dai, Damai, Chen, Deli, Ji, Dongjie, Li, Erhang, Lin, Fangyun, Dai, Fucong, Luo, Fuli, Hao, Guangbo, Chen, Guanting, Li, Guowei, Zhang, H., Bao, Han, Xu, Hanwei, Wang, Haocheng, Ding, Honghui, Xin, Huajian, Gao, Huazuo, Qu, Hui, Li, Hui, Guo, Jianzhong, Li, Jiashi, Wang, Jiawei, Chen, Jingchang, Yuan, Jingyang, Qiu, Junjie, Li, Junlong, Cai, J. L., Ni, Jiaqi, Liang, Jian, Chen, Jin, Dong, Kai, Hu, Kai, Gao, Kaige, Guan, Kang, Huang, Kexin, Yu, Kuai, Wang, Lean, Zhang, Lecong, Zhao, Liang, Wang, Litong, Zhang, Liyue, Xu, Lei, Xia, Leyi, Zhang, Mingchuan, Zhang, Minghua, Tang, Minghui, Li, Meng, Wang, Miaojun, Li, Mingming, Tian, Ning, Huang, Panpan, Zhang, Peng, Wang, Qiancheng, Chen, Qinyu, Du, Qiushi, Ge, Ruiqi, Zhang, Ruisong, Pan, Ruizhe, Wang, Runji, Chen, R. J., Jin, R. L., Chen, Ruyi, Lu, Shanghao, Zhou, Shangyan, Chen, Shanhuang, Ye, Shengfeng, Wang, Shiyu, Yu, Shuiping, Zhou, Shunfeng, Pan, Shuting, Li, S. S., Zhou, Shuang, Wu, Shaoqing, Ye, Shengfeng, Yun, Tao, Pei, Tian, Sun, Tianyu, Wang, T., Zeng, Wangding, Zhao, Wanjia, Liu, Wen, Liang, Wenfeng, Gao, Wenjun, Yu, Wenqin, Zhang, Wentao, Xiao, W. L., An, Wei, Liu, Xiaodong, Wang, Xiaohan, Chen, Xiaokang, Nie, Xiaotao, Cheng, Xin, Liu, Xin, Xie, Xin, Liu, Xingchao, Yang, Xinyu, Li, Xinyuan, Su, Xuecheng, Lin, Xuheng, Li, X. Q., Jin, Xiangyue, Shen, Xiaojin, Chen, Xiaosha, Sun, Xiaowen, Wang, Xiaoxiang, Song, Xinnan, Zhou, Xinyi, Wang, Xianzu, Shan, Xinxia, Li, Y. K., Wang, Y. Q., Wei, Y. X., Zhang, Yang, Xu, Yanhong, Li, Yao, Zhao, Yao, Sun, Yaofeng, Wang, Yaohui, Yu, Yi, Zhang, Yichao, Shi, Yifan, Xiong, Yiliang, He, Ying, Piao, Yishi, Wang, Yisong, Tan, Yixuan, Ma, Yiyang, Liu, Yiyuan, Guo, Yongqiang, Ou, Yuan, Wang, Yuduan, Gong, Yue, Zou, Yuheng, He, Yujia, Xiong, Yunfan, Luo, Yuxiang, You, Yuxiang, Liu, Yuxuan, Zhou, Yuyang, Zhu, Y. X., Xu, Yanhong, Huang, Yanping, Li, Yaohui, Zheng, Yi, Zhu, Yuchen, Ma, Yunxian, Tang, Ying, Zha, Yukun, Yan, Yuting, Ren, Z. Z., Ren, Zehui, Sha, Zhangli, Fu, Zhe, Xu, Zhean, Xie, Zhenda, Zhang, Zhengyan, Hao, Zhewen, Ma, Zhicheng, Yan, Zhigang, Wu, Zhiyu, Gu, Zihui, Zhu, Zijia, Liu, Zijun, Li, Zilin, Xie, Ziwei, Song, Ziyang, Pan, Zizheng, Huang, Zhen, Xu, Zhipeng, Zhang, Zhongyu, Zhang, Zhen
We introduce our first-generation reasoning models, DeepSeek-R1-Zero and DeepSeek-R1. DeepSeek-R1-Zero, a model trained via large-scale reinforcement learning (RL) without supervised fine-tuning (SFT) as a preliminary step, demonstrates remarkable reasoning capabilities. Through RL, DeepSeek-R1-Zero naturally emerges with numerous powerful and intriguing reasoning behaviors. However, it encounters challenges such as poor readability, and language mixing. To address these issues and further enhance reasoning performance, we introduce DeepSeek-R1, which incorporates multi-stage training and cold-start data before RL. DeepSeek-R1 achieves performance comparable to OpenAI-o1-1217 on reasoning tasks. To support the research community, we open-source DeepSeek-R1-Zero, DeepSeek-R1, and six dense models (1.5B, 7B, 8B, 14B, 32B, 70B) distilled from DeepSeek-R1 based on Qwen and Llama.
DeepSeek-V3 Technical Report
DeepSeek-AI, null, Liu, Aixin, Feng, Bei, Xue, Bing, Wang, Bingxuan, Wu, Bochao, Lu, Chengda, Zhao, Chenggang, Deng, Chengqi, Zhang, Chenyu, Ruan, Chong, Dai, Damai, Guo, Daya, Yang, Dejian, Chen, Deli, Ji, Dongjie, Li, Erhang, Lin, Fangyun, Dai, Fucong, Luo, Fuli, Hao, Guangbo, Chen, Guanting, Li, Guowei, Zhang, H., Bao, Han, Xu, Hanwei, Wang, Haocheng, Zhang, Haowei, Ding, Honghui, Xin, Huajian, Gao, Huazuo, Li, Hui, Qu, Hui, Cai, J. L., Liang, Jian, Guo, Jianzhong, Ni, Jiaqi, Li, Jiashi, Wang, Jiawei, Chen, Jin, Chen, Jingchang, Yuan, Jingyang, Qiu, Junjie, Li, Junlong, Song, Junxiao, Dong, Kai, Hu, Kai, Gao, Kaige, Guan, Kang, Huang, Kexin, Yu, Kuai, Wang, Lean, Zhang, Lecong, Xu, Lei, Xia, Leyi, Zhao, Liang, Wang, Litong, Zhang, Liyue, Li, Meng, Wang, Miaojun, Zhang, Mingchuan, Zhang, Minghua, Tang, Minghui, Li, Mingming, Tian, Ning, Huang, Panpan, Wang, Peiyi, Zhang, Peng, Wang, Qiancheng, Zhu, Qihao, Chen, Qinyu, Du, Qiushi, Chen, R. J., Jin, R. L., Ge, Ruiqi, Zhang, Ruisong, Pan, Ruizhe, Wang, Runji, Xu, Runxin, Zhang, Ruoyu, Chen, Ruyi, Li, S. S., Lu, Shanghao, Zhou, Shangyan, Chen, Shanhuang, Wu, Shaoqing, Ye, Shengfeng, Ye, Shengfeng, Ma, Shirong, Wang, Shiyu, Zhou, Shuang, Yu, Shuiping, Zhou, Shunfeng, Pan, Shuting, Wang, T., Yun, Tao, Pei, Tian, Sun, Tianyu, Xiao, W. L., Zeng, Wangding, Zhao, Wanjia, An, Wei, Liu, Wen, Liang, Wenfeng, Gao, Wenjun, Yu, Wenqin, Zhang, Wentao, Li, X. Q., Jin, Xiangyue, Wang, Xianzu, Bi, Xiao, Liu, Xiaodong, Wang, Xiaohan, Shen, Xiaojin, Chen, Xiaokang, Zhang, Xiaokang, Chen, Xiaosha, Nie, Xiaotao, Sun, Xiaowen, Wang, Xiaoxiang, Cheng, Xin, Liu, Xin, Xie, Xin, Liu, Xingchao, Yu, Xingkai, Song, Xinnan, Shan, Xinxia, Zhou, Xinyi, Yang, Xinyu, Li, Xinyuan, Su, Xuecheng, Lin, Xuheng, Li, Y. K., Wang, Y. Q., Wei, Y. X., Zhu, Y. X., Zhang, Yang, Xu, Yanhong, Xu, Yanhong, Huang, Yanping, Li, Yao, Zhao, Yao, Sun, Yaofeng, Li, Yaohui, Wang, Yaohui, Yu, Yi, Zheng, Yi, Zhang, Yichao, Shi, Yifan, Xiong, Yiliang, He, Ying, Tang, Ying, Piao, Yishi, Wang, Yisong, Tan, Yixuan, Ma, Yiyang, Liu, Yiyuan, Guo, Yongqiang, Wu, Yu, Ou, Yuan, Zhu, Yuchen, Wang, Yuduan, Gong, Yue, Zou, Yuheng, He, Yujia, Zha, Yukun, Xiong, Yunfan, Ma, Yunxian, Yan, Yuting, Luo, Yuxiang, You, Yuxiang, Liu, Yuxuan, Zhou, Yuyang, Wu, Z. F., Ren, Z. Z., Ren, Zehui, Sha, Zhangli, Fu, Zhe, Xu, Zhean, Huang, Zhen, Zhang, Zhen, Xie, Zhenda, Zhang, Zhengyan, Hao, Zhewen, Gou, Zhibin, Ma, Zhicheng, Yan, Zhigang, Shao, Zhihong, Xu, Zhipeng, Wu, Zhiyu, Zhang, Zhongyu, Li, Zhuoshu, Gu, Zihui, Zhu, Zijia, Liu, Zijun, Li, Zilin, Xie, Ziwei, Song, Ziyang, Gao, Ziyi, Pan, Zizheng
We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token. To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in DeepSeek-V2. Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance. We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities. Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models. Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training. In addition, its training process is remarkably stable. Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks.
A Framework for Adapting Human-Robot Interaction to Diverse User Groups
Rosin, Theresa Pekarek, Hassouna, Vanessa, Sun, Xiaowen, Krohm, Luca, Kordt, Henri-Leon, Beetz, Michael, Wermter, Stefan
To facilitate natural and intuitive interactions with diverse user groups in real-world settings, social robots must be capable of addressing the varying requirements and expectations of these groups while adapting their behavior based on user feedback. While previous research often focuses on specific demographics, we present a novel framework for adaptive Human-Robot Interaction (HRI) that tailors interactions to different user groups and enables individual users to modulate interactions through both minor and major interruptions. Our primary contributions include the development of an adaptive, ROS-based HRI framework with an open-source code base. This framework supports natural interactions through advanced speech recognition and voice activity detection, and leverages a large language model (LLM) as a dialogue bridge. We validate the efficiency of our framework through module tests and system trials, demonstrating its high accuracy in age recognition and its robustness to repeated user inputs and plan changes.
DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model
DeepSeek-AI, null, Liu, Aixin, Feng, Bei, Wang, Bin, Wang, Bingxuan, Liu, Bo, Zhao, Chenggang, Dengr, Chengqi, Ruan, Chong, Dai, Damai, Guo, Daya, Yang, Dejian, Chen, Deli, Ji, Dongjie, Li, Erhang, Lin, Fangyun, Luo, Fuli, Hao, Guangbo, Chen, Guanting, Li, Guowei, Zhang, H., Xu, Hanwei, Yang, Hao, Zhang, Haowei, Ding, Honghui, Xin, Huajian, Gao, Huazuo, Li, Hui, Qu, Hui, Cai, J. L., Liang, Jian, Guo, Jianzhong, Ni, Jiaqi, Li, Jiashi, Chen, Jin, Yuan, Jingyang, Qiu, Junjie, Song, Junxiao, Dong, Kai, Gao, Kaige, Guan, Kang, Wang, Lean, Zhang, Lecong, Xu, Lei, Xia, Leyi, Zhao, Liang, Zhang, Liyue, Li, Meng, Wang, Miaojun, Zhang, Mingchuan, Zhang, Minghua, Tang, Minghui, Li, Mingming, Tian, Ning, Huang, Panpan, Wang, Peiyi, Zhang, Peng, Zhu, Qihao, Chen, Qinyu, Du, Qiushi, Chen, R. J., Jin, R. L., Ge, Ruiqi, Pan, Ruizhe, Xu, Runxin, Chen, Ruyi, Li, S. S., Lu, Shanghao, Zhou, Shangyan, Chen, Shanhuang, Wu, Shaoqing, Ye, Shengfeng, Ma, Shirong, Wang, Shiyu, Zhou, Shuang, Yu, Shuiping, Zhou, Shunfeng, Zheng, Size, Wang, T., Pei, Tian, Yuan, Tian, Sun, Tianyu, Xiao, W. L., Zeng, Wangding, An, Wei, Liu, Wen, Liang, Wenfeng, Gao, Wenjun, Zhang, Wentao, Li, X. Q., Jin, Xiangyue, Wang, Xianzu, Bi, Xiao, Liu, Xiaodong, Wang, Xiaohan, Shen, Xiaojin, Chen, Xiaokang, Chen, Xiaosha, Nie, Xiaotao, Sun, Xiaowen, Wang, Xiaoxiang, Liu, Xin, Xie, Xin, Yu, Xingkai, Song, Xinnan, Zhou, Xinyi, Yang, Xinyu, Lu, Xuan, Su, Xuecheng, Wu, Y., Li, Y. K., Wei, Y. X., Zhu, Y. X., Xu, Yanhong, Huang, Yanping, Li, Yao, Zhao, Yao, Sun, Yaofeng, Li, Yaohui, Wang, Yaohui, Zheng, Yi, Zhang, Yichao, Xiong, Yiliang, Zhao, Yilong, He, Ying, Tang, Ying, Piao, Yishi, Dong, Yixin, Tan, Yixuan, Liu, Yiyuan, Wang, Yongji, Guo, Yongqiang, Zhu, Yuchen, Wang, Yuduan, Zou, Yuheng, Zha, Yukun, Ma, Yunxian, Yan, Yuting, You, Yuxiang, Liu, Yuxuan, Ren, Z. Z., Ren, Zehui, Sha, Zhangli, Fu, Zhe, Huang, Zhen, Zhang, Zhen, Xie, Zhenda, Hao, Zhewen, Shao, Zhihong, Wen, Zhiniu, Xu, Zhipeng, Zhang, Zhongyu, Li, Zhuoshu, Wang, Zihan, Gu, Zihui, Li, Zilin, Xie, Ziwei
We present DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and efficient inference. It comprises 236B total parameters, of which 21B are activated for each token, and supports a context length of 128K tokens. DeepSeek-V2 adopts innovative architectures including Multi-head Latent Attention (MLA) and DeepSeekMoE. MLA guarantees efficient inference through significantly compressing the Key-Value (KV) cache into a latent vector, while DeepSeekMoE enables training strong models at an economical cost through sparse computation. Compared with DeepSeek 67B, DeepSeek-V2 achieves significantly stronger performance, and meanwhile saves 42.5% of training costs, reduces the KV cache by 93.3%, and boosts the maximum generation throughput to 5.76 times. We pretrain DeepSeek-V2 on a high-quality and multi-source corpus consisting of 8.1T tokens, and further perform Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) to fully unlock its potential. Evaluation results show that, even with only 21B activated parameters, DeepSeek-V2 and its chat versions still achieve top-tier performance among open-source models.
Details Make a Difference: Object State-Sensitive Neurorobotic Task Planning
Sun, Xiaowen, Zhao, Xufeng, Lee, Jae Hee, Lu, Wenhao, Kerzel, Matthias, Wermter, Stefan
The state of an object reflects its current status or condition and is important for a robot's task planning and manipulation. However, detecting an object's state and generating a state-sensitive plan for robots is challenging. Recently, pre-trained Large Language Models (LLMs) and Vision-Language Models (VLMs) have shown impressive capabilities in generating plans. However, to the best of our knowledge, there is hardly any investigation on whether LLMs or VLMs can also generate object state-sensitive plans. To study this, we introduce an Object State-Sensitive Agent (OSSA), a task-planning agent empowered by pre-trained neural networks. We propose two methods for OSSA: (i) a modular model consisting of a pre-trained vision processing module (dense captioning model, DCM) and a natural language processing model (LLM), and (ii) a monolithic model consisting only of a VLM. To quantitatively evaluate the performances of the two methods, we use tabletop scenarios where the task is to clear the table. We contribute a multimodal benchmark dataset that takes object states into consideration. Our results show that both methods can be used for object state-sensitive tasks, but the monolithic approach outperforms the modular approach. The code for OSSA is available at \url{https://github.com/Xiao-wen-Sun/OSSA}
Teaching Text-to-Image Models to Communicate
Sun, Xiaowen, Feng, Jiazhan, Wang, Yuxuan, Lai, Yuxuan, Shen, Xingyu, Zhao, Dongyan
Various works have been extensively studied in the research of text-to-image generation. Although existing models perform well in text-to-image generation, there are significant challenges when directly employing them to generate images in dialogs. In this paper, we first highlight a new problem: dialog-to-image generation, that is, given the dialog context, the model should generate a realistic image which is consistent with the specified conversation as response. To tackle the problem, we propose an efficient approach for dialog-to-image generation without any intermediate translation, which maximizes the extraction of the semantic information contained in the dialog. Considering the characteristics of dialog structure, we put segment token before each sentence in a turn of a dialog to differentiate different speakers. Then, we fine-tune pre-trained text-to-image models to enable them to generate images conditioning on processed dialog context. After fine-tuning, our approach can consistently improve the performance of various models across multiple metrics. Experimental results on public benchmark demonstrate the effectiveness and practicability of our method.