Sun, Xian
SA-Occ: Satellite-Assisted 3D Occupancy Prediction in Real World
Chen, Chen, Wang, Zhirui, Sheng, Taowei, Jiang, Yi, Li, Yundu, Cheng, Peirui, Zhang, Luning, Chen, Kaiqiang, Hu, Yanfeng, Yang, Xue, Sun, Xian
Existing vision-based 3D occupancy prediction methods are inherently limited in accuracy due to their exclusive reliance on street-view imagery, neglecting the potential benefits of incorporating satellite views. We propose SA-Occ, the first Satellite-Assisted 3D occupancy prediction model, which leverages GPS & IMU to integrate historical yet readily available satellite imagery into real-time applications, effectively mitigating limitations of ego-vehicle perceptions, involving occlusions and degraded performance in distant regions. To address the core challenges of cross-view perception, we propose: 1) Dynamic-Decoupling Fusion, which resolves inconsistencies in dynamic regions caused by the temporal asynchrony between satellite and street views; 2) 3D-Proj Guidance, a module that enhances 3D feature extraction from inherently 2D satellite imagery; and 3) Uniform Sampling Alignment, which aligns the sampling density between street and satellite views. Evaluated on Occ3D-nuScenes, SA-Occ achieves state-of-the-art performance, especially among single-frame methods, with a 39.05% mIoU (a 6.97% improvement), while incurring only 6.93 ms of additional latency per frame. Our code and newly curated dataset are available at https://github.com/chenchen235/SA-Occ.
NavAgent: Multi-scale Urban Street View Fusion For UAV Embodied Vision-and-Language Navigation
Liu, Youzhi, Yao, Fanglong, Yue, Yuanchang, Xu, Guangluan, Sun, Xian, Fu, Kun
Vision-and-Language Navigation (VLN), as a widely discussed research direction in embodied intelligence, aims to enable embodied agents to navigate in complicated visual environments through natural language commands. Most existing VLN methods focus on indoor ground robot scenarios. However, when applied to UAV VLN in outdoor urban scenes, it faces two significant challenges. First, urban scenes contain numerous objects, which makes it challenging to match fine-grained landmarks in images with complex textual descriptions of these landmarks. Second, overall environmental information encompasses multiple modal dimensions, and the diversity of representations significantly increases the complexity of the encoding process. To address these challenges, we propose NavAgent, the first urban UAV embodied navigation model driven by a large Vision-Language Model. NavAgent undertakes navigation tasks by synthesizing multi-scale environmental information, including topological maps (global), panoramas (medium), and fine-grained landmarks (local). Specifically, we utilize GLIP to build a visual recognizer for landmark capable of identifying and linguisticizing fine-grained landmarks. Subsequently, we develop dynamically growing scene topology map that integrate environmental information and employ Graph Convolutional Networks to encode global environmental data. In addition, to train the visual recognizer for landmark, we develop NavAgent-Landmark2K, the first fine-grained landmark dataset for real urban street scenes. In experiments conducted on the Touchdown and Map2seq datasets, NavAgent outperforms strong baseline models. The code and dataset will be released to the community to facilitate the exploration and development of outdoor VLN.
RingMo-Aerial: An Aerial Remote Sensing Foundation Model With A Affine Transformation Contrastive Learning
Diao, Wenhui, Yu, Haichen, Kang, Kaiyue, Ling, Tong, Liu, Di, Feng, Yingchao, Bi, Hanbo, Ren, Libo, Li, Xuexue, Mao, Yongqiang, Sun, Xian
Aerial Remote Sensing (ARS) vision tasks pose significant challenges due to the unique characteristics of their viewing angles. Existing research has primarily focused on algorithms for specific tasks, which have limited applicability in a broad range of ARS vision applications. This paper proposes the RingMo-Aerial model, aiming to fill the gap in foundation model research in the field of ARS vision. By introducing the Frequency-Enhanced Multi-Head Self-Attention (FE-MSA) mechanism and an affine transformation-based contrastive learning pre-training method, the model's detection capability for small targets is enhanced and optimized for the tilted viewing angles characteristic of ARS. Furthermore, the ARS-Adapter, an efficient parameter fine-tuning method, is proposed to improve the model's adaptability and effectiveness in various ARS vision tasks. Experimental results demonstrate that RingMo-Aerial achieves SOTA performance on multiple downstream tasks. This indicates the practicality and effectiveness of RingMo-Aerial in enhancing the performance of ARS vision tasks.
STAR: A First-Ever Dataset and A Large-Scale Benchmark for Scene Graph Generation in Large-Size Satellite Imagery
Li, Yansheng, Wang, Linlin, Wang, Tingzhu, Yang, Xue, Luo, Junwei, Wang, Qi, Deng, Youming, Wang, Wenbin, Sun, Xian, Li, Haifeng, Dang, Bo, Zhang, Yongjun, Yu, Yi, Yan, Junchi
Scene graph generation (SGG) in satellite imagery (SAI) benefits promoting understanding of geospatial scenarios from perception to cognition. In SAI, objects exhibit great variations in scales and aspect ratios, and there exist rich relationships between objects (even between spatially disjoint objects), which makes it attractive to holistically conduct SGG in large-size very-high-resolution (VHR) SAI. However, there lack such SGG datasets. Due to the complexity of large-size SAI, mining triplets
COT: A Generative Approach for Hate Speech Counter-Narratives via Contrastive Optimal Transport
Zhang, Linhao, Jin, Li, Xu, Guangluan, Li, Xiaoyu, Sun, Xian
Counter-narratives, which are direct responses consisting of non-aggressive fact-based arguments, have emerged as a highly effective approach to combat the proliferation of hate speech. Previous methodologies have primarily focused on fine-tuning and post-editing techniques to ensure the fluency of generated contents, while overlooking the critical aspects of individualization and relevance concerning the specific hatred targets, such as LGBT groups, immigrants, etc. This research paper introduces a novel framework based on contrastive optimal transport, which effectively addresses the challenges of maintaining target interaction and promoting diversification in generating counter-narratives. Firstly, an Optimal Transport Kernel (OTK) module is leveraged to incorporate hatred target information in the token representations, in which the comparison pairs are extracted between original and transported features. Secondly, a self-contrastive learning module is employed to address the issue of model degeneration. This module achieves this by generating an anisotropic distribution of token representations. Finally, a target-oriented search method is integrated as an improved decoding strategy to explicitly promote domain relevance and diversification in the inference process. This strategy modifies the model's confidence score by considering both token similarity and target relevance. Quantitative and qualitative experiments have been evaluated on two benchmark datasets, which demonstrate that our proposed model significantly outperforms current methods evaluated by metrics from multiple aspects.
DCP-Net: A Distributed Collaborative Perception Network for Remote Sensing Semantic Segmentation
Wang, Zhechao, Cheng, Peirui, Duan, Shujing, Chen, Kaiqiang, Wang, Zhirui, Li, Xinming, Sun, Xian
Onboard intelligent processing is widely applied in emergency tasks in the field of remote sensing. However, it is predominantly confined to an individual platform with a limited observation range as well as susceptibility to interference, resulting in limited accuracy. Considering the current state of multi-platform collaborative observation, this article innovatively presents a distributed collaborative perception network called DCP-Net. Firstly, the proposed DCP-Net helps members to enhance perception performance by integrating features from other platforms. Secondly, a self-mutual information match module is proposed to identify collaboration opportunities and select suitable partners, prioritizing critical collaborative features and reducing redundant transmission cost. Thirdly, a related feature fusion module is designed to address the misalignment between local and collaborative features, improving the quality of fused features for the downstream task. We conduct extensive experiments and visualization analyses using three semantic segmentation datasets, including Potsdam, iSAID and DFC23. The results demonstrate that DCP-Net outperforms the existing methods comprehensively, improving mIoU by 2.61%~16.89% at the highest collaboration efficiency, which promotes the performance to a state-of-the-art level.
Thinking Like an Expert:Multimodal Hypergraph-of-Thought (HoT) Reasoning to boost Foundation Modals
Yao, Fanglong, Tian, Changyuan, Liu, Jintao, Zhang, Zequn, Liu, Qing, Jin, Li, Li, Shuchao, Li, Xiaoyu, Sun, Xian
Reasoning ability is one of the most crucial capabilities of a foundation model, signifying its capacity to address complex reasoning tasks. Chain-of-Thought (CoT) technique is widely regarded as one of the effective methods for enhancing the reasoning ability of foundation models and has garnered significant attention. However, the reasoning process of CoT is linear, step-by-step, similar to personal logical reasoning, suitable for solving general and slightly complicated problems. On the contrary, the thinking pattern of an expert owns two prominent characteristics that cannot be handled appropriately in CoT, i.e., high-order multi-hop reasoning and multimodal comparative judgement. Therefore, the core motivation of this paper is transcending CoT to construct a reasoning paradigm that can think like an expert. The hyperedge of a hypergraph could connect various vertices, making it naturally suitable for modelling high-order relationships. Inspired by this, this paper innovatively proposes a multimodal Hypergraph-of-Thought (HoT) reasoning paradigm, which enables the foundation models to possess the expert-level ability of high-order multi-hop reasoning and multimodal comparative judgement. Specifically, a textual hypergraph-of-thought is constructed utilizing triple as the primary thought to model higher-order relationships, and a hyperedge-of-thought is generated through multi-hop walking paths to achieve multi-hop inference. Furthermore, we devise a visual hypergraph-of-thought to interact with the textual hypergraph-of-thought via Cross-modal Co-Attention Graph Learning for multimodal comparative verification. Experimentations on the ScienceQA benchmark demonstrate the proposed HoT-based T5 outperforms CoT-based GPT3.5 and chatGPT, which is on par with CoT-based GPT4 with a lower model size.
Tool Learning with Foundation Models
Qin, Yujia, Hu, Shengding, Lin, Yankai, Chen, Weize, Ding, Ning, Cui, Ganqu, Zeng, Zheni, Huang, Yufei, Xiao, Chaojun, Han, Chi, Fung, Yi Ren, Su, Yusheng, Wang, Huadong, Qian, Cheng, Tian, Runchu, Zhu, Kunlun, Liang, Shihao, Shen, Xingyu, Xu, Bokai, Zhang, Zhen, Ye, Yining, Li, Bowen, Tang, Ziwei, Yi, Jing, Zhu, Yuzhang, Dai, Zhenning, Yan, Lan, Cong, Xin, Lu, Yaxi, Zhao, Weilin, Huang, Yuxiang, Yan, Junxi, Han, Xu, Sun, Xian, Li, Dahai, Phang, Jason, Yang, Cheng, Wu, Tongshuang, Ji, Heng, Liu, Zhiyuan, Sun, Maosong
Humans possess an extraordinary ability to create and utilize tools, allowing them to overcome physical limitations and explore new frontiers. With the advent of foundation models, AI systems have the potential to be equally adept in tool use as humans. This paradigm, i.e., tool learning with foundation models, combines the strengths of specialized tools and foundation models to achieve enhanced accuracy, efficiency, and automation in problem-solving. Despite its immense potential, there is still a lack of a comprehensive understanding of key challenges, opportunities, and future endeavors in this field. To this end, we present a systematic investigation of tool learning in this paper. We first introduce the background of tool learning, including its cognitive origins, the paradigm shift of foundation models, and the complementary roles of tools and models. Then we recapitulate existing tool learning research into tool-augmented and tool-oriented learning. We formulate a general tool learning framework: starting from understanding the user instruction, models should learn to decompose a complex task into several subtasks, dynamically adjust their plan through reasoning, and effectively conquer each sub-task by selecting appropriate tools. We also discuss how to train models for improved tool-use capabilities and facilitate the generalization in tool learning. Considering the lack of a systematic tool learning evaluation in prior works, we experiment with 18 representative tools and show the potential of current foundation models in skillfully utilizing tools. Finally, we discuss several open problems that require further investigation for tool learning. Overall, we hope this paper could inspire future research in integrating tools with foundation models.
TOT: Topology-Aware Optimal Transport For Multimodal Hate Detection
Zhang, Linhao, Jin, Li, Sun, Xian, Xu, Guangluan, Zhang, Zequn, Li, Xiaoyu, Liu, Nayu, Liu, Qing, Yan, Shiyao
Multimodal hate detection, which aims to identify harmful content online such as memes, is crucial for building a wholesome internet environment. Previous work has made enlightening exploration in detecting explicit hate remarks. However, most of their approaches neglect the analysis of implicit harm, which is particularly challenging as explicit text markers and demographic visual cues are often twisted or missing. The leveraged cross-modal attention mechanisms also suffer from the distributional modality gap and lack logical interpretability. To address these semantic gaps issues, we propose TOT: a topology-aware optimal transport framework to decipher the implicit harm in memes scenario, which formulates the cross-modal aligning problem as solutions for optimal transportation plans. Specifically, we leverage an optimal transport kernel method to capture complementary information from multiple modalities. The kernel embedding provides a non-linear transformation ability to reproduce a kernel Hilbert space (RKHS), which reflects significance for eliminating the distributional modality gap. Moreover, we perceive the topology information based on aligned representations to conduct bipartite graph path reasoning. The newly achieved state-of-the-art performance on two publicly available benchmark datasets, together with further visual analysis, demonstrate the superiority of TOT in capturing implicit cross-modal alignment.
dame-flame: A Python Library Providing Fast Interpretable Matching for Causal Inference
Gupta, Neha R., Orlandi, Vittorio, Chang, Chia-Rui, Wang, Tianyu, Morucci, Marco, Dey, Pritam, Howell, Thomas J., Sun, Xian, Ghosal, Angikar, Roy, Sudeepa, Rudin, Cynthia, Volfovsky, Alexander
The dame-flame Python package is the first major implementation of two algorithms, the dynamic almost matching exactly (DAME) algorithm (Dieng, Liu, Roy, Rudin, and Volfovsky 2019, published in AISTATS'19), and the fast, large-scale almost matching exactly (FLAME) algorithm (Wang, Morucci, Awan, Liu, Roy, Rudin, and Volfovsky 2019, published in JMLR'21), which provide almost exact matching of treatment and control units in discrete observational data for causal analysis. As discussed in Dieng et al. (2019), and Wang et al. (2019), the two algorithms produce high-quality interpretable matched groups, by using machine learning on a holdout training set to learn distance metrics. DAME solves an optimization problem that matches units on as many covariates as possible, prioritizing matches on important covariates. FLAME approximates the solution found by DAME via a much faster backward feature selection procedure. The DAME and FLAME algorithms are discussed in the remainder of this section. We also provide testing and installation details. In Section 2, we discuss the class structure in the dame-flame package, detail special features of dame-flame, and compare dame-flame to other matching packages. In Section 3, we offer examples and a user guide.