Goto

Collaborating Authors

 Sun, Shuang


StickerConv: Generating Multimodal Empathetic Responses from Scratch

arXiv.org Artificial Intelligence

Stickers, while widely recognized for enhancing empathetic communication in online interactions, remain underexplored in current empathetic dialogue research. In this paper, we introduce the Agent for StickerConv (Agent4SC), which uses collaborative agent interactions to realistically simulate human behavior with sticker usage, thereby enhancing multimodal empathetic communication. Building on this foundation, we develop a multimodal empathetic dialogue dataset, StickerConv, which includes 12.9K dialogue sessions, 5.8K unique stickers, and 2K diverse conversational scenarios, specifically designs to augment the generation of empathetic responses in a multimodal context. To leverage the richness of this dataset, we propose PErceive and Generate Stickers (PEGS), a multimodal empathetic response generation model, complemented by a comprehensive set of empathy evaluation metrics based on LLM. Our experiments demonstrate PEGS's effectiveness in generating contextually relevant and emotionally resonant multimodal empathetic responses, contributing to the advancement of more nuanced and engaging empathetic dialogue systems. Our project page is available at https://neu-datamining.github.io/StickerConv .


Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge

arXiv.org Artificial Intelligence

Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e. 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that undergone gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.