Goto

Collaborating Authors

 Sun, Shanhui


Label-Efficient Data Augmentation with Video Diffusion Models for Guidewire Segmentation in Cardiac Fluoroscopy

arXiv.org Artificial Intelligence

The accurate segmentation of guidewires in interventional cardiac fluoroscopy videos is crucial for computer-aided navigation tasks. Although deep learning methods have demonstrated high accuracy and robustness in wire segmentation, they require substantial annotated datasets for generalizability, underscoring the need for extensive labeled data to enhance model performance. To address this challenge, we propose the Segmentation-guided Frame-consistency Video Diffusion Model (SF-VD) to generate large collections of labeled fluoroscopy videos, augmenting the training data for wire segmentation networks. SF-VD leverages videos with limited annotations by independently modeling scene distribution and motion distribution. It first samples the scene distribution by generating 2D fluoroscopy images with wires positioned according to a specified input mask, and then samples the motion distribution by progressively generating subsequent frames, ensuring frame-to-frame coherence through a frame-consistency strategy. A segmentation-guided mechanism further refines the process by adjusting wire contrast, ensuring a diverse range of visibility in the synthesized image. Evaluation on a fluoroscopy dataset confirms the superior quality of the generated videos and shows significant improvements in guidewire segmentation.


Computationally Efficient 3D MRI Reconstruction with Adaptive MLP

arXiv.org Artificial Intelligence

Compared with 2D MRI, 3D MRI provides superior volumetric spatial resolution and signal-to-noise ratio. However, it is more challenging to reconstruct 3D MRI images. Current methods are mainly based on convolutional neural networks (CNN) with small kernels, which are difficult to scale up to have sufficient fitting power for 3D MRI reconstruction due to the large image size and GPU memory constraint. Furthermore, MRI reconstruction is a deconvolution problem, which demands long-distance information that is difficult to capture by CNNs with small convolution kernels. The multi-layer perceptron (MLP) can model such long-distance information, but it requires a fixed input size. In this paper, we proposed Recon3DMLP, a hybrid of CNN modules with small kernels for low-frequency reconstruction and adaptive MLP (dMLP) modules with large kernels to boost the high-frequency reconstruction, for 3D MRI reconstruction. We further utilized the circular shift operation based on MRI physics such that dMLP accepts arbitrary image size and can extract global information from the entire FOV. We also propose a GPU memory efficient data fidelity module that can reduce $>$50$\%$ memory. We compared Recon3DMLP with other CNN-based models on a high-resolution (HR) 3D MRI dataset. Recon3DMLP improves HR 3D reconstruction and outperforms several existing CNN-based models under similar GPU memory consumption, which demonstrates that Recon3DMLP is a practical solution for HR 3D MRI reconstruction.


An Unsupervised Framework for Joint MRI Super Resolution and Gibbs Artifact Removal

arXiv.org Artificial Intelligence

The k-space data generated from magnetic resonance imaging (MRI) is only a finite sampling of underlying signals. Therefore, MRI images often suffer from low spatial resolution and Gibbs ringing artifacts. Previous studies tackled these two problems separately, where super resolution methods tend to enhance Gibbs artifacts, whereas Gibbs ringing removal methods tend to blur the images. It is also a challenge that high resolution ground truth is hard to obtain in clinical MRI. In this paper, we propose an unsupervised learning framework for both MRI super resolution and Gibbs artifacts removal without using high resolution ground truth. Furthermore, we propose regularization methods to improve the model's generalizability across out-of-distribution MRI images. We evaluated our proposed methods with other state-of-the-art methods on eight MRI datasets with various contrasts and anatomical structures. Our method not only achieves the best SR performance but also significantly reduces the Gibbs artifacts. Our method also demonstrates good generalizability across different datasets, which is beneficial to clinical applications where training data are usually scarce and biased.