Goto

Collaborating Authors

 Sun, Rui


Asynchronous Personalized Federated Learning through Global Memorization

arXiv.org Artificial Intelligence

The proliferation of Internet of Things devices and advances in communication technology have unleashed an explosion of personal data, amplifying privacy concerns amid stringent regulations like GDPR and CCPA. Federated Learning offers a privacy preserving solution by enabling collaborative model training across decentralized devices without centralizing sensitive data. However, statistical heterogeneity from non-independent and identically distributed datasets and system heterogeneity due to client dropouts particularly those with monopolistic classes severely degrade the global model's performance. To address these challenges, we propose the Asynchronous Personalized Federated Learning framework, which empowers clients to develop personalized models using a server side semantic generator. This generator, trained via data free knowledge transfer under global model supervision, enhances client data diversity by producing both seen and unseen samples, the latter enabled by Zero-Shot Learning to mitigate dropout-induced data loss. To counter the risks of synthetic data impairing training, we introduce a decoupled model interpolation method, ensuring robust personalization. Extensive experiments demonstrate that AP FL significantly outperforms state of the art FL methods in tackling non-IID distributions and client dropouts, achieving superior accuracy and resilience across diverse real-world scenarios.


AutoCas: Autoregressive Cascade Predictor in Social Networks via Large Language Models

arXiv.org Artificial Intelligence

Popularity prediction in information cascades plays a crucial role in social computing, with broad applications in viral marketing, misinformation control, and content recommendation. However, information propagation mechanisms, user behavior, and temporal activity patterns exhibit significant diversity, necessitating a foundational model capable of adapting to such variations. At the same time, the amount of available cascade data remains relatively limited compared to the vast datasets used for training large language models (LLMs). Recent studies have demonstrated the feasibility of leveraging LLMs for time-series prediction by exploiting commonalities across different time-series domains. Building on this insight, we introduce the Autoregressive Information Cascade Predictor (AutoCas), an LLM-enhanced model designed specifically for cascade popularity prediction. Unlike natural language sequences, cascade data is characterized by complex local topologies, diffusion contexts, and evolving dynamics, requiring specialized adaptations for effective LLM integration. To address these challenges, we first tokenize cascade data to align it with sequence modeling principles. Next, we reformulate cascade diffusion as an autoregressive modeling task to fully harness the architectural strengths of LLMs. Beyond conventional approaches, we further introduce prompt learning to enhance the synergy between LLMs and cascade prediction. Extensive experiments demonstrate that AutoCas significantly outperforms baseline models in cascade popularity prediction while exhibiting scaling behavior inherited from LLMs. Code is available at this repository: https://anonymous.4open.science/r/AutoCas-85C6


Strategic priorities for transformative progress in advancing biology with proteomics and artificial intelligence

arXiv.org Artificial Intelligence

Artificial intelligence (AI) is transforming scientific research, including proteomics. Advances in mass spectrometry (MS)-based proteomics data quality, diversity, and scale, combined with groundbreaking AI techniques, are unlocking new challenges and opportunities in biological discovery. Here, we highlight key areas where AI is driving innovation, from data analysis to new biological insights. These include developing an AI-friendly ecosystem for proteomics data generation, sharing, and analysis; improving peptide and protein identification and quantification; characterizing protein-protein interactions and protein complexes; advancing spatial and perturbation proteomics; integrating multi-omics data; and ultimately enabling AI-empowered virtual cells.


Scaling Autonomous Agents via Automatic Reward Modeling And Planning

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated remarkable capabilities across a range of text-generation tasks. However, LLMs still struggle with problems requiring multi-step decision-making and environmental feedback, such as online shopping, scientific reasoning, and mathematical problem-solving. Unlike pure text data, collecting large-scale decision-making data is challenging. Moreover, many powerful LLMs are only accessible through APIs, which hinders their fine-tuning for agent tasks due to cost and complexity. To address LLM agents' limitations, we propose a framework that can automatically learn a reward model from the environment without human annotations. This model can be used to evaluate the action trajectories of LLM agents and provide heuristics for task planning. Specifically, our approach involves employing one LLM-based agent to navigate an environment randomly, generating diverse action trajectories. Subsequently, a separate LLM is leveraged to assign a task intent and synthesize a negative response alongside the correct response for each trajectory. These triplets (task intent, positive response, and negative response) are then utilized as training data to optimize a reward model capable of scoring action trajectories. The effectiveness and generalizability of our framework are demonstrated through evaluations conducted on different agent benchmarks. In conclusion, our proposed framework represents a significant advancement in enhancing LLM agents' decision-making capabilities. By automating the learning of reward models, we overcome the challenges of data scarcity and API limitations, potentially revolutionizing the application of LLMs in complex and interactive environments. This research paves the way for more sophisticated AI agents capable of tackling a wide range of real-world problems requiring multi-step decision-making.


Exemplar-condensed Federated Class-incremental Learning

arXiv.org Artificial Intelligence

We propose Exemplar-Condensed federated class-incremental learning (ECoral) to distil the training characteristics of real images from streaming data into informative rehearsal exemplars. The proposed method eliminates the limitations of exemplar selection in replay-based approaches for mitigating catastrophic forgetting in federated continual learning (FCL). The limitations particularly related to the heterogeneity of information density of each summarized data. Our approach maintains the consistency of training gradients and the relationship to past tasks for the summarized exemplars to represent the streaming data compared to the original images effectively. Additionally, our approach reduces the information-level heterogeneity of the summarized data by inter-client sharing of the disentanglement generative model. Extensive experiments show that our ECoral outperforms several state-of-the-art methods and can be seamlessly integrated with many existing approaches to enhance performance.


LLM4AD: A Platform for Algorithm Design with Large Language Model

arXiv.org Artificial Intelligence

We introduce LLM4AD, a unified Python platform for algorithm design (AD) with large language models (LLMs). LLM4AD is a generic framework with modularized blocks for search methods, algorithm design tasks, and LLM interface. The platform integrates numerous key methods and supports a wide range of algorithm design tasks across various domains including optimization, machine learning, and scientific discovery. We have also designed a unified evaluation sandbox to ensure a secure and robust assessment of algorithms. Additionally, we have compiled a comprehensive suite of support resources, including tutorials, examples, a user manual, online resources, and a dedicated graphical user interface (GUI) to enhance the usage of LLM4AD. We believe this platform will serve as a valuable tool for fostering future development in the merging research direction of LLM-assisted algorithm design.


AIArena: A Blockchain-Based Decentralized AI Training Platform

arXiv.org Artificial Intelligence

The rapid advancement of AI has underscored critical challenges in its development and implementation, largely due to centralized control by a few major corporations. This concentration of power intensifies biases within AI models, resulting from inadequate governance and oversight mechanisms. Additionally, it limits public involvement and heightens concerns about the integrity of model generation. Such monopolistic control over data and AI outputs threatens both innovation and fair data usage, as users inadvertently contribute data that primarily benefits these corporations. In this work, we propose AIArena, a blockchain-based decentralized AI training platform designed to democratize AI development and alignment through on-chain incentive mechanisms. AIArena fosters an open and collaborative environment where participants can contribute models and computing resources. Its on-chain consensus mechanism ensures fair rewards for participants based on their contributions. We instantiate and implement AIArena on the public Base blockchain Sepolia testnet, and the evaluation results demonstrate the feasibility of AIArena in real-world applications.


SoK: Decentralized AI (DeAI)

arXiv.org Artificial Intelligence

The centralization of Artificial Intelligence (AI) poses significant challenges, including single points of failure, inherent biases, data privacy concerns, and scalability issues. These problems are especially prevalent in closed-source large language models (LLMs), where user data is collected and used without transparency. To mitigate these issues, blockchain-based decentralized AI (DeAI) has emerged as a promising solution. DeAI combines the strengths of both blockchain and AI technologies to enhance the transparency, security, decentralization, and trustworthiness of AI systems. However, a comprehensive understanding of state-of-the-art DeAI development, particularly for active industry solutions, is still lacking. In this work, we present a Systematization of Knowledge (SoK) for blockchain-based DeAI solutions. We propose a taxonomy to classify existing DeAI protocols based on the model lifecycle. Based on this taxonomy, we provide a structured way to clarify the landscape of DeAI protocols and identify their similarities and differences. We analyze the functionalities of blockchain in DeAI, investigating how blockchain features contribute to enhancing the security, transparency, and trustworthiness of AI processes, while also ensuring fair incentives for AI data and model contributors. In addition, we identify key insights and research gaps in developing DeAI protocols, highlighting several critical avenues for future research.


Privacy-Preserving Federated Foundation Model for Generalist Ultrasound Artificial Intelligence

arXiv.org Artificial Intelligence

Ultrasound imaging is widely used in clinical diagnosis due to its non-invasive nature and real-time capabilities. However, conventional ultrasound diagnostics face several limitations, including high dependence on physician expertise and suboptimal image quality, which complicates interpretation and increases the likelihood of diagnostic errors. Artificial intelligence (AI) has emerged as a promising solution to enhance clinical diagnosis, particularly in detecting abnormalities across various biomedical imaging modalities. Nonetheless, current AI models for ultrasound imaging face critical challenges. First, these models often require large volumes of labeled medical data, raising concerns over patient privacy breaches. Second, most existing models are task-specific, which restricts their broader clinical utility. To overcome these challenges, we present UltraFedFM, an innovative privacy-preserving ultrasound foundation model. UltraFedFM is collaboratively pre-trained using federated learning across 16 distributed medical institutions in 9 countries, leveraging a dataset of over 1 million ultrasound images covering 19 organs and 10 ultrasound modalities. This extensive and diverse data, combined with a secure training framework, enables UltraFedFM to exhibit strong generalization and diagnostic capabilities. It achieves an average area under the receiver operating characteristic curve of 0.927 for disease diagnosis and a dice similarity coefficient of 0.878 for lesion segmentation. Notably, UltraFedFM surpasses the diagnostic accuracy of mid-level ultrasonographers and matches the performance of expert-level sonographers in the joint diagnosis of 8 common systemic diseases. These findings indicate that UltraFedFM can significantly enhance clinical diagnostics while safeguarding patient privacy, marking an advancement in AI-driven ultrasound imaging for future clinical applications.


Multi-Continental Healthcare Modelling Using Blockchain-Enabled Federated Learning

arXiv.org Artificial Intelligence

One of the biggest challenges of building artificial intelligence (AI) model in healthcare area is the data sharing. Since healthcare data is private, sensitive, and heterogeneous, collecting sufficient data for modelling is exhausted, costly, and sometimes impossible. In this paper, we propose a framework for global healthcare modelling using datasets from multi-continents (Europe, North America and Asia) while without sharing the local datasets, and choose glucose management as a study model to verify its effectiveness. Technically, blockchain-enabled federated learning is implemented with adaption to make it meet with the privacy and safety requirements of healthcare data, meanwhile rewards honest participation and penalize malicious activities using its on-chain incentive mechanism. Experimental results show that the proposed framework is effective, efficient, and privacy preserved. Its prediction accuracy is much better than the models trained from limited personal data and is similar to, and even slightly better than, the results from a centralized dataset. This work paves the way for international collaborations on healthcare projects, where additional data is crucial for reducing bias and providing benefits to humanity.