Goto

Collaborating Authors

 Sun, Qinghua


MixPro: Simple yet Effective Data Augmentation for Prompt-based Learning

arXiv.org Artificial Intelligence

Prompt-based learning has shown considerable promise in reformulating various downstream tasks as cloze problems by combining original input with a predetermined template. This approach demonstrates its effectiveness, especially in few-shot learning scenarios, where the model is trained on a scarce amount of data. Despite its successes, the limited templates and text in few-shot prompt-based learning scenarios leave significant room for performance improvement. Moreover, existing methods sometimes resort to model ensembles, which, while effective, could potentially hamper model efficiency due to increased computational demands. To address these issues, we introduce MixPro, an augmentation method designed to augment both the vanilla input text and the templates. We implement this through the token-level, the sentence-level, and the template-level Mixup strategies. The experimental results on five few-shot datasets show that MixPro outperforms other augmentation baselines, improving model performance by an average of 5.08% compared to before augmentation.


Emotional Speech Synthesis for Companion Robot to Imitate Professional Caregiver Speech

arXiv.org Artificial Intelligence

When people try to influence others to do something, they subconsciously adjust their speech to include appropriate emotional information. In order for a robot to influence people in the same way, the robot should be able to imitate the range of human emotions when speaking. To achieve this, we propose a speech synthesis method for imitating the emotional states in human speech. In contrast to previous methods, the advantage of our method is that it requires less manual effort to adjust the emotion of the synthesized speech. Our synthesizer receives an emotion vector to characterize the emotion of synthesized speech. The vector is automatically obtained from human utterances by using a speech emotion recognizer. We evaluated our method in a scenario when a robot tries to regulate an elderly person's circadian rhythm by speaking to the person using appropriate emotional states. For the target speech to imitate, we collected utterances from professional caregivers when they speak to elderly people at different times of the day. Then we conducted a subjective evaluation where the elderly participants listened to the speech samples generated by our method. The results showed that listening to the samples made the participants feel more active in the early morning and calmer in the middle of the night. This suggests that the robot may be able to adjust the participants' circadian rhythm and that the robot can potentially exert influence similarly to a person.