Goto

Collaborating Authors

 Sun, Linzhuang


MM-Verify: Enhancing Multimodal Reasoning with Chain-of-Thought Verification

arXiv.org Artificial Intelligence

According to the Test-Time Scaling, the integration of External Slow-Thinking with the Verify mechanism has been demonstrated to enhance multi-round reasoning in large language models (LLMs). However, in the multimodal (MM) domain, there is still a lack of a strong MM-Verifier. In this paper, we introduce MM-Verifier and MM-Reasoner to enhance multimodal reasoning through longer inference and more robust verification. First, we propose a two-step MM verification data synthesis method, which combines a simulation-based tree search with verification and uses rejection sampling to generate high-quality Chain-of-Thought (COT) data. This data is then used to fine-tune the verification model, MM-Verifier. Additionally, we present a more efficient method for synthesizing MMCOT data, bridging the gap between text-based and multimodal reasoning. The synthesized data is used to fine-tune MM-Reasoner. Our MM-Verifier outperforms all larger models on the MathCheck, MathVista, and MathVerse benchmarks. Moreover, MM-Reasoner demonstrates strong effectiveness and scalability, with performance improving as data size increases. Finally, our approach achieves strong performance when combining MM-Reasoner and MM-Verifier, reaching an accuracy of 65.3 on MathVista, surpassing GPT-4o (63.8) with 12 rollouts.


Baichuan-M1: Pushing the Medical Capability of Large Language Models

arXiv.org Artificial Intelligence

The current generation of large language models (LLMs) is typically designed for broad, general-purpose applications, while domain-specific LLMs, especially in vertical fields like medicine, remain relatively scarce. In particular, the development of highly efficient and practical LLMs for the medical domain is challenging due to the complexity of medical knowledge and the limited availability of high-quality data. To bridge this gap, we introduce Baichuan-M1, a series of large language models specifically optimized for medical applications. Unlike traditional approaches that simply continue pretraining on existing models or apply post-training to a general base model, Baichuan-M1 is trained from scratch with a dedicated focus on enhancing medical capabilities. Our model is trained on 20 trillion tokens and incorporates a range of effective training methods that strike a balance between general capabilities and medical expertise. As a result, Baichuan-M1 not only performs strongly across general domains such as mathematics and coding but also excels in specialized medical fields. We have open-sourced Baichuan-M1-14B, a mini version of our model, which can be accessed through the following links.


Baichuan-Omni-1.5 Technical Report

arXiv.org Artificial Intelligence

We introduce Baichuan-Omni-1.5, an omni-modal model that not only has omni-modal understanding capabilities but also provides end-to-end audio generation capabilities. To achieve fluent and high-quality interaction across modalities without compromising the capabilities of any modality, we prioritized optimizing three key aspects. First, we establish a comprehensive data cleaning and synthesis pipeline for multimodal data, obtaining about 500B high-quality data (text, audio, and vision). Second, an audio-tokenizer (Baichuan-Audio-Tokenizer) has been designed to capture both semantic and acoustic information from audio, enabling seamless integration and enhanced compatibility with MLLM. Lastly, we designed a multi-stage training strategy that progressively integrates multimodal alignment and multitask fine-tuning, ensuring effective synergy across all modalities. Baichuan-Omni-1.5 leads contemporary models (including GPT4o-mini and MiniCPM-o 2.6) in terms of comprehensive omni-modal capabilities. Notably, it achieves results comparable to leading models such as Qwen2-VL-72B across various multimodal medical benchmarks.


BEATS: Optimizing LLM Mathematical Capabilities with BackVerify and Adaptive Disambiguate based Efficient Tree Search

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have exhibited exceptional performance across a broad range of tasks and domains. However, they still encounter difficulties in solving mathematical problems due to the rigorous and logical nature of mathematics. Previous studies have employed techniques such as supervised fine-tuning (SFT), prompt engineering, and search-based methods to improve the mathematical problem-solving abilities of LLMs. Despite these efforts, their performance remains suboptimal and demands substantial computational resources. To address this issue, we propose a novel approach, BEATS, to enhance mathematical problem-solving abilities. Our method leverages newly designed prompts that guide the model to iteratively rewrite, advance by one step, and generate answers based on previous steps. Additionally, we employ a pruning tree search to optimize search time while achieving strong performance. Furthermore, we introduce a new back-verification technique that uses LLMs to validate the correctness of the generated answers. Notably, our method improves Qwen2-7b-Instruct's score from 36.94 to 61.52 (outperforming GPT-4's 42.5) on the MATH benchmark.


Sentence-Level or Token-Level? A Comprehensive Study on Knowledge Distillation

arXiv.org Artificial Intelligence

Knowledge distillation, transferring knowledge from a teacher model to a student model, has emerged as a powerful technique in neural machine translation for compressing models or simplifying training targets. Knowledge distillation encompasses two primary methods: sentence-level distillation and token-level distillation. In sentence-level distillation, the student model is trained to align with the output of the teacher model, which can alleviate the training difficulty and give student model a comprehensive understanding of global structure. Differently, token-level distillation requires the student model to learn the output distribution of the teacher model, facilitating a more fine-grained transfer of knowledge. Studies have revealed divergent performances between sentence-level and token-level distillation across different scenarios, leading to the confusion on the empirical selection of knowledge distillation methods. In this study, we argue that token-level distillation, with its more complex objective (i.e., distribution), is better suited for ``simple'' scenarios, while sentence-level distillation excels in ``complex'' scenarios. To substantiate our hypothesis, we systematically analyze the performance of distillation methods by varying the model size of student models, the complexity of text, and the difficulty of decoding procedure. While our experimental results validate our hypothesis, defining the complexity level of a given scenario remains a challenging task. So we further introduce a novel hybrid method that combines token-level and sentence-level distillation through a gating mechanism, aiming to leverage the advantages of both individual methods. Experiments demonstrate that the hybrid method surpasses the performance of token-level or sentence-level distillation methods and the previous works by a margin, demonstrating the effectiveness of the proposed hybrid method.


Human-computer Interaction for Brain-inspired Computing Based on Machine Learning And Deep Learning:A Review

arXiv.org Artificial Intelligence

The continuous development of artificial intelligence has a profound impact on biomedical research and other fields.Brain-inspired computing is an important intersection of multimodal technology and biomedical field. This paper presents a comprehensive review of machine learning (ML) and deep learning (DL) models applied in human-computer interaction for brain-inspired computing, tracking their evolution, application value, challenges, and potential research trajectories. First, the basic concepts and development history are reviewed, and their evolution is divided into two stages: recent machine learning and current deep learning, emphasizing the importance of each stage in the research state of human-computer interaction for brain-inspired computing. In addition, the latest progress and key techniques of deep learning in different tasks of human-computer interaction for brain-inspired computing are introduced from six perspectives. Despite significant progress, challenges remain in making full use of its capabilities. This paper aims to provide a comprehensive review of human-computer interaction for brain-inspired computing models based on machine learning and deep learning, highlighting their potential in various applications and providing a valuable reference for future academic research. It can be accessed through the following url: https://github.com/ultracoolHub/brain-inspired-computing


Rational Sensibility: LLM Enhanced Empathetic Response Generation Guided by Self-presentation Theory

arXiv.org Artificial Intelligence

Having the ability to empathize is crucial for accurately representing human behavior during conversations. Despite numerous research aim to improve the cognitive capability of models by incorporating external knowledge, there has been limited attention on the sensible and rational expression of the conversation itself, which are crucial components of the cognitive empathy. Guided by self-presentation theory in sociology, we have designed an innovative categorical approach that segregates historical dialogues into sensible and rational sentences and subsequently elucidate the context through the designed attention mechanism. However, the rational information within the conversation is restricted and the external knowledge used in previous methods have limitations of semantic contradiction and narrow vision field. Considering the impressive performance of LLM in the domain of intelligent agent. We employ LLaMA2-70b as a rational brain to analyze the profound logical information maintained in conversations, which assists the model assessing the balance of sensibility and rationality to produce quality empathetic responses. Experimental evaluations demonstrate that our method outperforms other comparable methods on both automatic and human evaluations.


Unraveling Key Factors of Knowledge Distillation

arXiv.org Artificial Intelligence

Knowledge distillation, a technique for model compression and performance enhancement, has gained significant traction in Neural Machine Translation (NMT). However, existing research primarily focuses on empirical applications, and there is a lack of comprehensive understanding of how student model capacity, data complexity, and decoding strategies collectively influence distillation effectiveness. Addressing this gap, our study conducts an in-depth investigation into these factors, particularly focusing on their interplay in word-level and sequence-level distillation within NMT. Through extensive experimentation across datasets like IWSLT13 En$\rightarrow$Fr, IWSLT14 En$\rightarrow$De, and others, we empirically validate hypotheses related to the impact of these factors on knowledge distillation. Our research not only elucidates the significant influence of model capacity, data complexity, and decoding strategies on distillation effectiveness but also introduces a novel, optimized distillation approach. This approach, when applied to the IWSLT14 de$\rightarrow$en translation task, achieves state-of-the-art performance, demonstrating its practical efficacy in advancing the field of NMT.


Boosting the Power of Small Multimodal Reasoning Models to Match Larger Models with Self-Consistency Training

arXiv.org Artificial Intelligence

Multimodal reasoning is a challenging task that requires models to reason across multiple modalities to answer questions. Existing approaches have made progress by incorporating language and visual modalities into a two-stage reasoning framework, separating rationale generation from answer inference. However, these approaches often fall short due to the inadequate quality of the generated rationales. In this work, we delve into the importance of rationales in model reasoning. We observe that when rationales are completely accurate, the model's accuracy significantly improves, highlighting the need for high-quality rationale generation. Motivated by this, we propose MC-CoT, a self-consistency training strategy that generates multiple rationales and answers, subsequently selecting the most accurate through a voting process. This approach not only enhances the quality of generated rationales but also leads to more accurate and robust answers. Through extensive experiments, we demonstrate that our approach significantly improves model performance across various benchmarks. Remarkably, we show that even smaller base models, when equipped with our proposed approach, can achieve results comparable to those of larger models, illustrating the potential of our approach in harnessing the power of rationales for improved multimodal reasoning. The code is available at https://github.com/chengtan9907/mc-cot.


A Survey on Image-text Multimodal Models

arXiv.org Artificial Intelligence

Amidst the evolving landscape of artificial intelligence, the convergence of visual and textual information has surfaced as a crucial frontier, leading to the advent of image-text multimodal models. This paper provides a comprehensive review of the evolution and current state of image-text multimodal models, exploring their application value, challenges, and potential research trajectories. Initially, we revisit the basic concepts and developmental milestones of these models, introducing a novel classification that segments their evolution into three distinct phases, based on their time of introduction and subsequent impact on the discipline. Furthermore, based on the tasks' significance and prevalence in the academic landscape, we propose a categorization of the tasks associated with image-text multimodal models into five major types, elucidating the recent progress and key technologies within each category. Despite the remarkable accomplishments of these models, numerous challenges and issues persist. This paper delves into the inherent challenges and limitations of image-text multimodal models, fostering the exploration of prospective research directions. Our objective is to offer an exhaustive overview of the present research landscape of image-text multimodal models and to serve as a valuable reference for future scholarly endeavors. We extend an invitation to the broader community to collaborate in enhancing the image-text multimodal model community, accessible at: \href{https://github.com/i2vec/A-survey-on-image-text-multimodal-models}{https://github.com/i2vec/A-survey-on-image-text-multimodal-models}.