Goto

Collaborating Authors

 Sun, Ke


Reasoning based on symbolic and parametric knowledge bases: a survey

arXiv.org Artificial Intelligence

Reasoning is fundamental to human intelligence, and critical for problem-solving, decision-making, and critical thinking. Reasoning refers to drawing new conclusions based on existing knowledge, which can support various applications like clinical diagnosis, basic education, and financial analysis. Though a good number of surveys have been proposed for reviewing reasoning-related methods, none of them has systematically investigated these methods from the viewpoint of their dependent knowledge base. Both the scenarios to which the knowledge bases are applied and their storage formats are significantly different. Hence, investigating reasoning methods from the knowledge base perspective helps us better understand the challenges and future directions. To fill this gap, this paper first classifies the knowledge base into symbolic and parametric ones. The former explicitly stores information in human-readable symbols, and the latter implicitly encodes knowledge within parameters. Then, we provide a comprehensive overview of reasoning methods using symbolic knowledge bases, parametric knowledge bases, and both of them. Finally, we identify the future direction toward enhancing reasoning capabilities to bridge the gap between human and machine intelligence.


Mistral-C2F: Coarse to Fine Actor for Analytical and Reasoning Enhancement in RLHF and Effective-Merged LLMs

arXiv.org Artificial Intelligence

Despite the advances in Large Language Models (LLMs), exemplified by models like GPT-4 and Claude, smaller-scale LLMs such as Llama and Mistral often struggle with generating in-depth and coherent dialogues. This paper presents a novel two-step Coarse-to-Fine Actor model to address the inherent limitations in conversational and analytical capabilities of small-sized LLMs. Our approach begins with the Policy-based Coarse Actor, employing a technique we term "Continuous Maximization". The Coarse Actor establishes an enhanced, knowledge-rich pool adept at aligning with human preference styles in analysis and reasoning. Through the RLHF process, it employs Continuous Maximization, a strategy that dynamically and adaptively extends the output length limit, enabling the generation of more detailed and analytical content. Subsequently, the Fine Actor refines this analytical content, addressing the generation of excessively redundant information from the Coarse Actor. We introduce a "Knowledge Residue Merger" approach, refining the content from the Coarse Actor and merging it with an existing Instruction model to improve quality, correctness, and reduce redundancies. We applied our methodology to the popular Mistral model, creating Mistral-C2F, which has demonstrated exceptional performance across 11 general language tasks and the MT-Bench Dialogue task, outperforming similar-scale models and even larger models with 13B and 30B parameters. Our model has significantly improved conversational and analytical reasoning abilities.


Balancing Enhancement, Harmlessness, and General Capabilities: Enhancing Conversational LLMs with Direct RLHF

arXiv.org Artificial Intelligence

In recent advancements in Conversational Large Language Models (LLMs), a concerning trend has emerged, showing that many new base LLMs experience a knowledge reduction in their foundational capabilities following Supervised Fine-Tuning (SFT). This process often leads to issues such as forgetting or a decrease in the base model's abilities. Moreover, fine-tuned models struggle to align with user preferences, inadvertently increasing the generation of toxic outputs when specifically prompted. To overcome these challenges, we adopted an innovative approach by completely bypassing SFT and directly implementing Harmless Reinforcement Learning from Human Feedback (RLHF). Our method not only preserves the base model's general capabilities but also significantly enhances its conversational abilities, while notably reducing the generation of toxic outputs. Our approach holds significant implications for fields that demand a nuanced understanding and generation of responses, such as customer service. We applied this methodology to Mistral, the most popular base model, thereby creating Mistral-Plus. Our validation across 11 general tasks demonstrates that Mistral-Plus outperforms similarly sized open-source base models and their corresponding instruct versions. Importantly, the conversational abilities of Mistral-Plus were significantly improved, indicating a substantial advancement over traditional SFT models in both safety and user preference alignment.


SISSA: Real-time Monitoring of Hardware Functional Safety and Cybersecurity with In-vehicle SOME/IP Ethernet Traffic

arXiv.org Artificial Intelligence

Scalable service-Oriented Middleware over IP (SOME/IP) is an Ethernet communication standard protocol in the Automotive Open System Architecture (AUTOSAR), promoting ECU-to-ECU communication over the IP stack. However, SOME/IP lacks a robust security architecture, making it susceptible to potential attacks. Besides, random hardware failure of ECU will disrupt SOME/IP communication. In this paper, we propose SISSA, a SOME/IP communication traffic-based approach for modeling and analyzing in-vehicle functional safety and cyber security. Specifically, SISSA models hardware failures with the Weibull distribution and addresses five potential attacks on SOME/IP communication, including Distributed Denial-of-Services, Man-in-the-Middle, and abnormal communication processes, assuming a malicious user accesses the in-vehicle network. Subsequently, SISSA designs a series of deep learning models with various backbones to extract features from SOME/IP sessions among ECUs. We adopt residual self-attention to accelerate the model's convergence and enhance detection accuracy, determining whether an ECU is under attack, facing functional failure, or operating normally. Additionally, we have created and annotated a dataset encompassing various classes, including indicators of attack, functionality, and normalcy. This contribution is noteworthy due to the scarcity of publicly accessible datasets with such characteristics.Extensive experimental results show the effectiveness and efficiency of SISSA.


Tradeoffs of Diagonal Fisher Information Matrix Estimators

arXiv.org Artificial Intelligence

The Fisher information matrix characterizes the local geometry in the parameter space of neural networks. It elucidates insightful theories and useful tools to understand and optimize neural networks. Given its high computational cost, practitioners often use random estimators and evaluate only the diagonal entries. We examine two such estimators, whose accuracy and sample complexity depend on their associated variances. We derive bounds of the variances and instantiate them in regression and classification networks. We navigate trade-offs of both estimators based on analytical and numerical studies. We find that the variance quantities depend on the non-linearity with respect to different parameter groups and should not be neglected when estimating the Fisher information.


ICE-GRT: Instruction Context Enhancement by Generative Reinforcement based Transformers

arXiv.org Artificial Intelligence

The emergence of Large Language Models (LLMs) such as ChatGPT and LLaMA encounter limitations in domain-specific tasks, with these models often lacking depth and accuracy in specialized areas, and exhibiting a decrease in general capabilities when fine-tuned, particularly analysis ability in small sized models. To address these gaps, we introduce ICE-GRT, utilizing Reinforcement Learning from Human Feedback (RLHF) grounded in Proximal Policy Optimization (PPO), demonstrating remarkable ability in in-domain scenarios without compromising general task performance. Our exploration of ICE-GRT highlights its understanding and reasoning ability to not only generate robust answers but also to provide detailed analyses of the reasons behind the answer. This capability marks a significant progression beyond the scope of Supervised Fine-Tuning models. The success of ICE-GRT is dependent on several crucial factors, including Appropriate Data, Reward Size Scaling, KL-Control, Advantage Normalization, etc. The ICE-GRT model exhibits state-of-the-art performance in domain-specific tasks and across 12 general Language tasks against equivalent size and even larger size LLMs, highlighting the effectiveness of our approach. We provide a comprehensive analysis of the ICE-GRT, underscoring the significant advancements it brings to the field of LLM.


High-order Tensor Pooling with Attention for Action Recognition

arXiv.org Artificial Intelligence

We aim at capturing high-order statistics of feature vectors formed by a neural network, and propose end-to-end second- and higher-order pooling to form a tensor descriptor. Tensor descriptors require a robust similarity measure due to low numbers of aggregated vectors and the burstiness phenomenon, when a given feature appears more/less frequently than statistically expected. The Heat Diffusion Process (HDP) on a graph Laplacian is closely related to the Eigenvalue Power Normalization (EPN) of the covariance/autocorrelation matrix, whose inverse forms a loopy graph Laplacian. We show that the HDP and the EPN play the same role, i.e., to boost or dampen the magnitude of the eigenspectrum thus preventing the burstiness. We equip higher-order tensors with EPN which acts as a spectral detector of higher-order occurrences to prevent burstiness. We also prove that for a tensor of order r built from d dimensional feature descriptors, such a detector gives the likelihood if at least one higher-order occurrence is 'projected' into one of binom(d,r) subspaces represented by the tensor; thus forming a tensor power normalization metric endowed with binom(d,r) such 'detectors'. For experimental contributions, we apply several second- and higher-order pooling variants to action recognition, provide previously not presented comparisons of such pooling variants, and show state-of-the-art results on HMDB-51, YUP++ and MPII Cooking Activities.


Magmaw: Modality-Agnostic Adversarial Attacks on Machine Learning-Based Wireless Communication Systems

arXiv.org Artificial Intelligence

Machine Learning (ML) has been instrumental in enabling joint transceiver optimization by merging all physical layer blocks of the end-to-end wireless communication systems. Although there have been a number of adversarial attacks on ML-based wireless systems, the existing methods do not provide a comprehensive view including multi-modality of the source data, common physical layer components, and wireless domain constraints. This paper proposes Magmaw, the first black-box attack methodology capable of generating universal adversarial perturbations for any multimodal signal transmitted over a wireless channel. We further introduce new objectives for adversarial attacks on ML-based downstream applications. The resilience of the attack to the existing widely used defense methods of adversarial training and perturbation signal subtraction is experimentally verified. For proof-of-concept evaluation, we build a real-time wireless attack platform using a software-defined radio system. Experimental results demonstrate that Magmaw causes significant performance degradation even in the presence of the defense mechanisms. Surprisingly, Magmaw is also effective against encrypted communication channels and conventional communications.


Balancing Specialized and General Skills in LLMs: The Impact of Modern Tuning and Data Strategy

arXiv.org Artificial Intelligence

This paper introduces a multifaceted methodology for fine-tuning and evaluating large language models (LLMs) for specialized monetization tasks. The goal is to balance general language proficiency with domain-specific skills. The methodology has three main components: 1) Carefully blending in-domain and general-purpose data during fine-tuning to achieve an optimal balance between general and specialized capabilities; 2) Designing a comprehensive evaluation framework with 45 questions tailored to assess performance on functionally relevant dimensions like reliability, consistency, and business impact; 3) Analyzing how model size and continual training influence metrics to guide efficient resource allocation during fine-tuning. The paper details the design, data collection, analytical techniques, and results validating the proposed frameworks. It aims to provide businesses and researchers with actionable insights on effectively adapting LLMs for specialized contexts. We also intend to make public the comprehensive evaluation framework, which includes the 45 tailored questions and their respective scoring guidelines, to foster transparency and collaboration in adapting LLMs for specialized tasks.


Pareto Adversarial Robustness: Balancing Spatial Robustness and Sensitivity-based Robustness

arXiv.org Artificial Intelligence

Adversarial robustness, which primarily comprises sensitivity-based robustness and spatial robustness, plays an integral part in achieving robust generalization. In this paper, we endeavor to design strategies to achieve universal adversarial robustness. To achieve this, we first investigate the relatively less-explored realm of spatial robustness. Then, we integrate the existing spatial robustness methods by incorporating both local and global spatial vulnerability into a unified spatial attack and adversarial training approach. Furthermore, we present a comprehensive relationship between natural accuracy, sensitivity-based robustness, and spatial robustness, supported by strong evidence from the perspective of robust representation. Crucially, to reconcile the interplay between the mutual impacts of various robustness components into one unified framework, we incorporate the \textit{Pareto criterion} into the adversarial robustness analysis, yielding a novel strategy called Pareto Adversarial Training for achieving universal robustness. The resulting Pareto front, which delineates the set of optimal solutions, provides an optimal balance between natural accuracy and various adversarial robustness. This sheds light on solutions for achieving universal robustness in the future. To the best of our knowledge, we are the first to consider universal adversarial robustness via multi-objective optimization.