Plotting

 Sun, Hongbin


threaTrace: Detecting and Tracing Host-based Threats in Node Level Through Provenance Graph Learning

arXiv.org Artificial Intelligence

--Host-based threats such as Program Attack, Malware Implantation, and Advanced Persistent Threats (APT), are commonly adopted by modern attackers. Recent studies propose leveraging the rich contextual information in data provenance to detect threats in a host. Data provenance is a directed acyclic graph constructed from system audit data. Nodes in a provenance graph represent system entities (e.g., processes and files) and edges represent system calls in the direction of information flow. However, previous studies, which extract features of the whole provenance graph, are not sensitive to the small number of threat-related entities and thus result in low performance when hunting stealthy threats. We tailor GraphSAGE, an inductive graph neural network, to learn every benign entity's role in a provenance graph. OW ADA YS, attackers tend to perform intrusion activities in important hosts of those big enterprises and governments [1]. They usually exploit zero-day ...


Neural Code Summarization: How Far Are We?

arXiv.org Artificial Intelligence

Source code summaries are important for the comprehension and maintenance of programs. However, there are plenty of programs with missing, outdated, or mismatched summaries. Recently, deep learning techniques have been exploited to automatically generate summaries for given code snippets. To achieve a profound understanding of how far we are from solving this problem, in this paper, we conduct a systematic and in-depth analysis of five state-of-the-art neural source code summarization models on three widely used datasets. Our evaluation results suggest that: (1) The BLEU metric, which is widely used by existing work for evaluating the performance of the summarization models, has many variants. Ignoring the differences among the BLEU variants could affect the validity of the claimed results. Furthermore, we discover an important, previously unknown bug about BLEU calculation in a commonly-used software package. (2) Code pre-processing choices can have a large impact on the summarization performance, therefore they should not be ignored. (3) Some important characteristics of datasets (corpus size, data splitting method, and duplication ratio) have a significant impact on model evaluation. Based on the experimental results, we give some actionable guidelines on more systematic ways for evaluating code summarization and choosing the best method in different scenarios. We also suggest possible future research directions. We believe that our results can be of great help for practitioners and researchers in this interesting area.


A Multivariate Density Forecast Approach for Online Power System Security Assessment

arXiv.org Artificial Intelligence

A multivariate density forecast model based on deep learning is designed in this paper to forecast the joint cumulative distribution functions (JCDFs) of multiple security margins in power systems. Differing from existing multivariate density forecast models, the proposed method requires no a priori hypotheses on the distribution of forecasting targets. In addition, based on the universal approximation capability of neural networks, the value domain of the proposed approach has been proven to include all continuous JCDFs. The forecasted JCDF is further employed to calculate the deterministic security assessment index evaluating the security level of future power system operations. Numerical tests verify the superiority of the proposed method over current multivariate density forecast models. The deterministic security assessment index is demonstrated to be more informative for operators than security margins as well.


Rethinking Learnable Tree Filter for Generic Feature Transform

arXiv.org Artificial Intelligence

The Learnable Tree Filter presents a remarkable approach to model structure-preserving relations for semantic segmentation. Nevertheless, the intrinsic geometric constraint forces it to focus on the regions with close spatial distance, hindering the effective long-range interactions. To relax the geometric constraint, we give the analysis by reformulating it as a Markov Random Field and introduce a learnable unary term. Besides, we propose a learnable spanning tree algorithm to replace the original non-differentiable one, which further improves the flexibility and robustness. With the above improvements, our method can better capture long-range dependencies and preserve structural details with linear complexity, which is extended to several vision tasks for more generic feature transform. Extensive experiments on object detection/instance segmentation demonstrate the consistent improvements over the original version. For semantic segmentation, we achieve leading performance (82.1% mIoU) on the Cityscapes benchmark without bells-and-whistles. Code is available at https://github.com/StevenGrove/LearnableTreeFilterV2.


Fine-Grained Dynamic Head for Object Detection

arXiv.org Artificial Intelligence

The Feature Pyramid Network (FPN) presents a remarkable approach to alleviate the scale variance in object representation by performing instance-level assignments. Nevertheless, this strategy ignores the distinct characteristics of different sub-regions in an instance. To this end, we propose a fine-grained dynamic head to conditionally select a pixel-level combination of FPN features from different scales for each instance, which further releases the ability of multi-scale feature representation. Moreover, we design a spatial gate with the new activation function to reduce computational complexity dramatically through spatially sparse convolutions. Extensive experiments demonstrate the effectiveness and efficiency of the proposed method on several state-of-the-art detection benchmarks.


End-to-End Object Detection with Fully Convolutional Network

arXiv.org Artificial Intelligence

Mainstream object detectors based on the fully convolutional network has achieved impressive performance. While most of them still need a hand-designed non-maximum suppression (NMS) post-processing, which impedes fully end-to-end training. In this paper, we give the analysis of discarding NMS, where the results reveal that a proper label assignment plays a crucial role. To this end, for fully convolutional detectors, we introduce a Prediction-aware One-To-One (POTO) label assignment for classification to enable end-to-end detection, which obtains comparable performance with NMS. Besides, a simple 3D Max Filtering (3DMF) is proposed to utilize the multi-scale features and improve the discriminability of convolutions in the local region. With these techniques, our end-to-end framework achieves competitive performance against many state-of-the-art detectors with NMS on COCO and CrowdHuman datasets. The code is available at https://github.com/Megvii-BaseDetection/DeFCN .


TACNet: Transition-Aware Context Network for Spatio-Temporal Action Detection

arXiv.org Artificial Intelligence

Current state-of-the-art approaches for spatio-temporal action detection have achieved impressive results but remain unsatisfactory for temporal extent detection. The main reason comes from that, there are some ambiguous states similar to the real actions which may be treated as target actions even by a well-trained network. In this paper, we define these ambiguous samples as "transitional states", and propose a Transition-Aware Context Network (TACNet) to distinguish transitional states. The proposed TACNet includes two main components, i.e., temporal context detector and transition-aware classifier. The temporal context detector can extract long-term context information with constant time complexity by constructing a recurrent network. The transition-aware classifier can further distinguish transitional states by classifying action and transitional states simultaneously. Therefore, the proposed TACNet can substantially improve the performance of spatio-temporal action detection. We extensively evaluate the proposed TACNet on UCF101-24 and J-HMDB datasets. The experimental results demonstrate that TACNet obtains competitive performance on JHMDB and significantly outperforms the state-of-the-art methods on the untrimmed UCF101-24 in terms of both frame-mAP and video-mAP.