Sun, Haojia
Retrieval-Augmented Generation for Domain-Specific Question Answering: A Case Study on Pittsburgh and CMU
Sun, Haojia, Wang, Yaqi, Zhang, Shuting
We designed a Retrieval-Augmented Generation (RAG) system to provide large language models with relevant documents for answering domain-specific questions about Pittsburgh and Carnegie Mellon University (CMU). We extracted over 1,800 subpages using a greedy scraping strategy and employed a hybrid annotation process, combining manual and Mistral-generated question-answer pairs, achieving an inter-annotator agreement (IAA) score of 0.7625. Our RAG framework integrates BM25 and FAISS retrievers, enhanced with a reranker for improved document retrieval accuracy. Experimental results show that the RAG system significantly outperforms a non-RAG baseline, particularly in time-sensitive and complex queries, with an F1 score improvement from 5.45% to 42.21% and recall of 56.18%. This study demonstrates the potential of RAG systems in enhancing answer precision and relevance, while identifying areas for further optimization in document retrieval and model training.
DSCom: A Data-Driven Self-Adaptive Community-Based Framework for Influence Maximization in Social Networks
Zuo, Yuxin, Sun, Haojia, Hu, Yongyi, Guo, Jianxiong, Gao, Xiaofeng
Influence maximization aims to find a subset of seeds that maximize the influence spread under a given budget. In this paper, we mainly address the data-driven version of this problem, where the diffusion model is not given but needs to be inferred from the history cascades. Several previous works have addressed this topic in a statistical way and provided efficient algorithms with theoretical guarantee. However, in their settings, though the diffusion parameters are inferred, they still need users to preset the diffusion model, which can be an intractable problem in real-world practices. In this paper, we reformulate the problem on the attributed network and leverage the node attributes to estimate the closeness between the connected nodes. Specifically, we propose a machine learning-based framework, named DSCom, to address this problem in an heuristic way. Under this framework, we first infer the users' relationship from the diffusion dataset through attention mechanism and then leverage spectral clustering to overcome the influence overlap problem in the lack of exact diffusion formula. Compared to the previous theoretical works, we carefully designed empirical experiments with parameterized diffusion models based on real-world social networks, which prove the efficiency and effectiveness of our algorithm.