Goto

Collaborating Authors

 Sun, Han


B2Net: Camouflaged Object Detection via Boundary Aware and Boundary Fusion

arXiv.org Artificial Intelligence

Camouflaged object detection (COD) aims to identify objects in images that are well hidden in the environment due to their high similarity to the background in terms of texture and color. However, existing most boundary-guided camouflage object detection algorithms tend to generate object boundaries early in the network, and inaccurate edge priors often introduce noises in object detection. Address on this issue, we propose a novel network named B2Net aiming to enhance the accuracy of obtained boundaries by reusing boundary-aware modules at different stages of the network. Specifically, we present a Residual Feature Enhanced Module (RFEM) with the goal of integrating more discriminative feature representations to enhance detection accuracy and reliability. After that, the Boundary Aware Module (BAM) is introduced to explore edge cues twice by integrating spatial information from low-level features and semantic information from high-level features. Finally, we design the Cross-scale Boundary Fusion Module(CBFM) that integrate information across different scales in a top-down manner, merging boundary features with object features to obtain a comprehensive feature representation incorporating boundary information. Extensive experimental results on three challenging benchmark datasets demonstrate that our proposed method B2Net outperforms 15 state-of-art methods under widely used evaluation metrics. Code will be made publicly available.


DecoratingFusion: A LiDAR-Camera Fusion Network with the Combination of Point-level and Feature-level Fusion

arXiv.org Artificial Intelligence

Lidars and cameras play essential roles in autonomous driving, offering complementary information for 3D detection. The state-of-the-art fusion methods integrate them at the feature level, but they mostly rely on the learned soft association between point clouds and images, which lacks interpretability and neglects the hard association between them. In this paper, we combine feature-level fusion with point-level fusion, using hard association established by the calibration matrices to guide the generation of object queries. Specifically, in the early fusion stage, we use the 2D CNN features of images to decorate the point cloud data, and employ two independent sparse convolutions to extract the decorated point cloud features. In the mid-level fusion stage, we initialize the queries with a center heatmap and embed the predicted class labels as auxiliary information into the queries, making the initial positions closer to the actual centers of the targets. Extensive experiments conducted on two popular datasets, i.e. KITTI, Waymo, demonstrate the superiority of DecoratingFusion.


Continuous Test-time Domain Adaptation for Efficient Fault Detection under Evolving Operating Conditions

arXiv.org Artificial Intelligence

Fault detection is crucial in industrial systems to prevent failures and optimize performance by distinguishing abnormal from normal operating conditions. Data-driven methods have been gaining popularity for fault detection tasks as the amount of condition monitoring data from complex industrial systems increases. Despite these advances, early fault detection remains a challenge under real-world scenarios. The high variability of operating conditions and environments makes it difficult to collect comprehensive training datasets that can represent all possible operating conditions, especially in the early stages of system operation. Furthermore, these variations often evolve over time, potentially leading to entirely new data distributions in the future that were previously unseen. These challenges prevent direct knowledge transfer across different units and over time, leading to the distribution gap between training and testing data and inducing performance degradation of those methods in real-world scenarios. To overcome this, our work introduces a novel approach for continuous test-time domain adaptation. This enables early-stage robust anomaly detection by addressing domain shifts and limited data representativeness issues. We propose a Test-time domain Adaptation Anomaly Detection (TAAD) framework that separates input variables into system parameters and measurements, employing two domain adaptation modules to independently adapt to each input category. This method allows for effective adaptation to evolving operating conditions and is particularly beneficial in systems with scarce data. Our approach, tested on a real-world pump monitoring dataset, shows significant improvements over existing domain adaptation methods in fault detection, demonstrating enhanced accuracy and reliability.


Analytic Federated Learning

arXiv.org Artificial Intelligence

In this paper, we introduce analytic federated learning (AFL), a new training paradigm that brings analytical (i.e., closed-form) solutions to the federated learning (FL) community. Our AFL draws inspiration from analytic learning -- a gradient-free technique that trains neural networks with analytical solutions in one epoch. In the local client training stage, the AFL facilitates a one-epoch training, eliminating the necessity for multi-epoch updates. In the aggregation stage, we derive an absolute aggregation (AA) law. This AA law allows a single-round aggregation, removing the need for multiple aggregation rounds. More importantly, the AFL exhibits a \textit{weight-invariant} property, meaning that regardless of how the full dataset is distributed among clients, the aggregated result remains identical. This could spawn various potentials, such as data heterogeneity invariance, client-number invariance, absolute convergence, and being hyperparameter-free (our AFL is the first hyperparameter-free method in FL history). We conduct experiments across various FL settings including extremely non-IID ones, and scenarios with a large number of clients (e.g., $\ge 1000$). In all these settings, our AFL constantly performs competitively while existing FL techniques encounter various obstacles. Code is available at \url{https://github.com/ZHUANGHP/Analytic-federated-learning}


SimMMDG: A Simple and Effective Framework for Multi-modal Domain Generalization

arXiv.org Artificial Intelligence

In real-world scenarios, achieving domain generalization (DG) presents significant challenges as models are required to generalize to unknown target distributions. Generalizing to unseen multi-modal distributions poses even greater difficulties due to the distinct properties exhibited by different modalities. To overcome the challenges of achieving domain generalization in multi-modal scenarios, we propose SimMMDG, a simple yet effective multi-modal DG framework. We argue that mapping features from different modalities into the same embedding space impedes model generalization. To address this, we propose splitting the features within each modality into modality-specific and modality-shared components. We employ supervised contrastive learning on the modality-shared features to ensure they possess joint properties and impose distance constraints on modality-specific features to promote diversity. In addition, we introduce a cross-modal translation module to regularize the learned features, which can also be used for missing-modality generalization. We demonstrate that our framework is theoretically well-supported and achieves strong performance in multi-modal DG on the EPIC-Kitchens dataset and the novel Human-Animal-Cartoon (HAC) dataset introduced in this paper. Our source code and HAC dataset are available at https://github.com/donghao51/SimMMDG.


Robust Ensembling Network for Unsupervised Domain Adaptation

arXiv.org Artificial Intelligence

Recently, in order to address the unsupervised domain adaptation (UDA) problem, extensive studies have been proposed to achieve transferrable models. Among them, the most prevalent method is adversarial domain adaptation, which can shorten the distance between the source domain and the target domain. Although adversarial learning is very effective, it still leads to the instability of the network and the drawbacks of confusing category information. In this paper, we propose a Robust Ensembling Network (REN) for UDA, which applies a robust time ensembling teacher network to learn global information for domain transfer. Specifically, REN mainly includes a teacher network and a student network, which performs standard domain adaptation training and updates weights of the teacher network. In addition, we also propose a dual-network conditional adversarial loss to improve the ability of the discriminator. Finally, for the purpose of improving the basic ability of the student network, we utilize the consistency constraint to balance the error between the student network and the teacher network. Extensive experimental results on several UDA datasets have demonstrated the effectiveness of our model by comparing with other state-of-the-art UDA algorithms.