Goto

Collaborating Authors

 Sun, Guo-Zhen


Exploiting Chaos to Control the Future

Neural Information Processing Systems

Recently, Ott, Grebogi and Yorke (OGY) [6] found an effective method to control chaotic systems to unstable fixed points by using only small control forces; however, OGY's method is based on and limited to a linear theory and requires considerable knowledge of the dynamics of the system to be controlled. In this paper we use two radial basis function networks: one as a model of an unknown plant and the other as the controller. The controller is trained with a recurrent learning algorithm to minimize a novel objective function such that the controller can locate an unstable fixed point and drive the system into the fixed point with no a priori knowledge of the system dynamics. Our results indicate that the neural controller offers many advantages over OGY's technique.


Exploiting Chaos to Control the Future

Neural Information Processing Systems

Recently, Ott, Grebogi and Yorke (OGY) [6] found an effective method to control chaotic systems to unstable fixed points by using onlysmall control forces; however, OGY's method is based on and limited to a linear theory and requires considerable knowledge of the dynamics of the system to be controlled. In this paper we use two radial basis function networks: one as a model of an unknown plant and the other as the controller. The controller is trained with a recurrent learning algorithm to minimize a novel objective function such that the controller can locate an unstable fixed point and drive the system into the fixed point with no a priori knowledge ofthe system dynamics. Our results indicate that the neural controller offers many advantages over OGY's technique.


Exploiting Chaos to Control the Future

Neural Information Processing Systems

Recently, Ott, Grebogi and Yorke (OGY) [6] found an effective method to control chaotic systems to unstable fixed points by using only small control forces; however, OGY's method is based on and limited to a linear theory and requires considerable knowledge of the dynamics of the system to be controlled. In this paper we use two radial basis function networks: one as a model of an unknown plant and the other as the controller. The controller is trained with a recurrent learning algorithm to minimize a novel objective function such that the controller can locate an unstable fixed point and drive the system into the fixed point with no a priori knowledge of the system dynamics. Our results indicate that the neural controller offers many advantages over OGY's technique.