Sun, Di
VP-MEL: Visual Prompts Guided Multimodal Entity Linking
Mi, Hongze, Li, Jinyuan, Zhang, Xuying, Cheng, Haoran, Wang, Jiahao, Sun, Di, Pan, Gang
Multimodal entity linking (MEL), a task aimed at linking mentions within multimodal contexts to their corresponding entities in a knowledge base (KB), has attracted much attention due to its wide applications in recent years. However, existing MEL methods often rely heavily on mention words as retrieval cues, which limits their ability to effectively utilize information from both images and text. This reliance poses significant challenges in scenarios where mention words are absent, as current MEL approaches struggle to leverage image-text pairs for accurate entity linking. To solve these issues, we introduce a Visual Prompts guided Multimodal Entity Linking (VP-MEL) task. Given a text-image pair, VP-MEL aims to link a marked region (i.e., visual prompt) in an image to its corresponding entities in the knowledge base. To facilitate this task, we present a new dataset, VPWiki, specifically designed for VP-MEL. Furthermore, we propose a framework named FBMEL, which enhances visual feature extraction using visual prompts and leverages the pretrained Detective-VLM model to capture latent information. Experimental results on the VPWiki dataset demonstrate that FBMEL outperforms baseline methods across multiple benchmarks for the VP-MEL task.
VisAidMath: Benchmarking Visual-Aided Mathematical Reasoning
Ma, Jingkun, Zhan, Runzhe, Wong, Derek F., Li, Yang, Sun, Di, Chan, Hou Pong, Chao, Lidia S.
Although previous research on large language models (LLMs) and large multi-modal models (LMMs) has systematically explored mathematical problem-solving (MPS) within visual contexts, the analysis of how these models process visual information during problem-solving remains insufficient. To address this gap, we present VisAidMath, a benchmark for evaluating the MPS process related to visual information. We follow a rigorous data curation pipeline involving both automated processes and manual annotations to ensure data quality and reliability. Consequently, this benchmark includes 1,200 challenging problems from various mathematical branches, vision-aid formulations, and difficulty levels, collected from diverse sources such as textbooks, examination papers, and Olympiad problems. Based on the proposed benchmark, we conduct comprehensive evaluations on ten mainstream LLMs and LMMs, highlighting deficiencies in the visual-aided reasoning process. For example, GPT-4V only achieves 45.33% accuracy in the visual-aided reasoning task, even with a drop of 2 points when provided with golden visual aids. In-depth analysis reveals that the main cause of deficiencies lies in hallucination regarding the implicit visual reasoning process, shedding light on future research directions in the visual-aided MPS process.
Advancing Grounded Multimodal Named Entity Recognition via LLM-Based Reformulation and Box-Based Segmentation
Li, Jinyuan, Li, Ziyan, Li, Han, Yu, Jianfei, Xia, Rui, Sun, Di, Pan, Gang
Grounded Multimodal Named Entity Recognition (GMNER) task aims to identify named entities, entity types and their corresponding visual regions. GMNER task exhibits two challenging attributes: 1) The tenuous correlation between images and text on social media contributes to a notable proportion of named entities being ungroundable. 2) There exists a distinction between coarse-grained noun phrases used in similar tasks (e.g., phrase localization) and fine-grained named entities. In this paper, we propose RiVEG, a unified framework that reformulates GMNER into a joint MNER-VE-VG task by leveraging large language models (LLMs) as connecting bridges. This reformulation brings two benefits: 1) It enables us to optimize the MNER module for optimal MNER performance and eliminates the need to pre-extract region features using object detection methods, thus naturally addressing the two major limitations of existing GMNER methods. 2) The introduction of Entity Expansion Expression module and Visual Entailment (VE) module unifies Visual Grounding (VG) and Entity Grounding (EG). This endows the proposed framework with unlimited data and model scalability. Furthermore, to address the potential ambiguity stemming from the coarse-grained bounding box output in GMNER, we further construct the new Segmented Multimodal Named Entity Recognition (SMNER) task and corresponding Twitter-SMNER dataset aimed at generating fine-grained segmentation masks, and experimentally demonstrate the feasibility and effectiveness of using box prompt-based Segment Anything Model (SAM) to empower any GMNER model with the ability to accomplish the SMNER task. Extensive experiments demonstrate that RiVEG significantly outperforms SoTA methods on four datasets across the MNER, GMNER, and SMNER tasks.
LLMs as Bridges: Reformulating Grounded Multimodal Named Entity Recognition
Li, Jinyuan, Li, Han, Sun, Di, Wang, Jiahao, Zhang, Wenkun, Wang, Zan, Pan, Gang
Grounded Multimodal Named Entity Recognition (GMNER) is a nascent multimodal task that aims to identify named entities, entity types and their corresponding visual regions. GMNER task exhibits two challenging properties: 1) The weak correlation between image-text pairs in social media results in a significant portion of named entities being ungroundable. 2) There exists a distinction between coarse-grained referring expressions commonly used in similar tasks (e.g., phrase localization, referring expression comprehension) and fine-grained named entities. In this paper, we propose RiVEG, a unified framework that reformulates GMNER into a joint MNER-VE-VG task by leveraging large language models (LLMs) as a connecting bridge. This reformulation brings two benefits: 1) It maintains the optimal MNER performance and eliminates the need for employing object detection methods to pre-extract regional features, thereby naturally addressing two major limitations of existing GMNER methods. 2) The introduction of entity expansion expression and Visual Entailment (VE) Module unifies Visual Grounding (VG) and Entity Grounding (EG). It enables RiVEG to effortlessly inherit the Visual Entailment and Visual Grounding capabilities of any current or prospective multimodal pretraining models. Extensive experiments demonstrate that RiVEG outperforms state-of-the-art methods on the existing GMNER dataset and achieves absolute leads of 10.65%, 6.21%, and 8.83% in all three subtasks.
Prompting ChatGPT in MNER: Enhanced Multimodal Named Entity Recognition with Auxiliary Refined Knowledge
Li, Jinyuan, Li, Han, Pan, Zhuo, Sun, Di, Wang, Jiahao, Zhang, Wenkun, Pan, Gang
Multimodal Named Entity Recognition (MNER) on social media aims to enhance textual entity prediction by incorporating image-based clues. Existing studies mainly focus on maximizing the utilization of pertinent image information or incorporating external knowledge from explicit knowledge bases. However, these methods either neglect the necessity of providing the model with external knowledge, or encounter issues of high redundancy in the retrieved knowledge. In this paper, we present PGIM -- a two-stage framework that aims to leverage ChatGPT as an implicit knowledge base and enable it to heuristically generate auxiliary knowledge for more efficient entity prediction. Specifically, PGIM contains a Multimodal Similar Example Awareness module that selects suitable examples from a small number of predefined artificial samples. These examples are then integrated into a formatted prompt template tailored to the MNER and guide ChatGPT to generate auxiliary refined knowledge. Finally, the acquired knowledge is integrated with the original text and fed into a downstream model for further processing. Extensive experiments show that PGIM outperforms state-of-the-art methods on two classic MNER datasets and exhibits a stronger robustness and generalization capability.