Goto

Collaborating Authors

 Sun, Chonglin


External Large Foundation Model: How to Efficiently Serve Trillions of Parameters for Online Ads Recommendation

arXiv.org Artificial Intelligence

Ads recommendation is a prominent service of online advertising systems and has been actively studied. Recent studies indicate that scaling-up and advanced design of the recommendation model can bring significant performance improvement. However, with a larger model scale, such prior studies have a significantly increasing gap from industry as they often neglect two fundamental challenges in industrial-scale applications. First, training and inference budgets are restricted for the model to be served, exceeding which may incur latency and impair user experience. Second, large-volume data arrive in a streaming mode with data distributions dynamically shifting, as new users/ads join and existing users/ads leave the system. We propose the External Large Foundation Model (ExFM) framework to address the overlooked challenges. Specifically, we develop external distillation and a data augmentation system (DAS) to control the computational cost of training/inference while maintaining high performance. We design the teacher in a way like a foundation model (FM) that can serve multiple students as vertical models (VMs) to amortize its building cost. We propose Auxiliary Head and Student Adapter to mitigate the data distribution gap between FM and VMs caused by the streaming data issue. Comprehensive experiments on internal industrial-scale applications and public datasets demonstrate significant performance gain by ExFM.


High-performance, Distributed Training of Large-scale Deep Learning Recommendation Models

arXiv.org Artificial Intelligence

Deep learning recommendation models (DLRMs) are used across many business-critical services at Facebook and are the single largest AI application in terms of infrastructure demand in its data-centers. In this paper we discuss the SW/HW co-designed solution for high-performance distributed training of large-scale DLRMs. We introduce a high-performance scalable software stack based on PyTorch and pair it with the new evolution of Zion platform, namely ZionEX. We demonstrate the capability to train very large DLRMs with up to 12 Trillion parameters and show that we can attain 40X speedup in terms of time to solution over previous systems. We achieve this by (i) designing the ZionEX platform with dedicated scale-out network, provisioned with high bandwidth, optimal topology and efficient transport (ii) implementing an optimized PyTorch-based training stack supporting both model and data parallelism (iii) developing sharding algorithms capable of hierarchical partitioning of the embedding tables along row, column dimensions and load balancing them across multiple workers; (iv) adding high-performance core operators while retaining flexibility to support optimizers with fully deterministic updates (v) leveraging reduced precision communications, multi-level memory hierarchy (HBM+DDR+SSD) and pipelining. Furthermore, we develop and briefly comment on distributed data ingestion and other supporting services that are required for the robust and efficient end-to-end training in production environments.


Time-based Sequence Model for Personalization and Recommendation Systems

arXiv.org Machine Learning

Recommendation systems play an important role in many e-commerce applications as well as search and ranking services [6, 15, 21, 26, 30, 31, 41, 48]. There are two main strategies to perform recommendations: content and collaborative filtering. In content filtering the user creates a profile based on its interest, while human experts create a profile for the product. An algorithm matches the two profiles and recommends the closest matches to the user. For example, this approach is taken by the Pandora Music Genome Project [29]. In collaborative filtering, the recommendations are based only on user past behavior from which the future behavior is derived. The advantage of this approach is that it requires no external information and is not domain specific. The challenge is that in the beginning very few user-item interactions are available. For instance, this cold start problem is addressed by Netflix by asking the user for a few favorite movies when creating their profile for the first time [27].