Sun, Chengjian
Optimizing QoE-Privacy Tradeoff for Proactive VR Streaming
Wei, Xing, Han, Shengqian, Yang, Chenyang, Sun, Chengjian
Proactive virtual reality (VR) streaming requires users to upload viewpoint-related information, raising significant privacy concerns. Existing strategies preserve privacy by introducing errors to viewpoints, which, however, compromises the quality of experience (QoE) of users. In this paper, we first delve into the analysis of the viewpoint leakage probability achieved by existing privacy-preserving approaches. We determine the optimal distribution of viewpoint errors that minimizes the viewpoint leakage probability. Our analyses show that existing approaches cannot fully eliminate viewpoint leakage. Then, we propose a novel privacy-preserving approach that introduces noise to uploaded viewpoint prediction errors, which can ensure zero viewpoint leakage probability. Given the proposed approach, the tradeoff between privacy preservation and QoE is optimized to minimize the QoE loss while satisfying the privacy requirement. Simulation results validate our analysis results and demonstrate that the proposed approach offers a promising solution for balancing privacy and QoE.
Model-Free Unsupervised Learning for Optimization Problems with Constraints
Sun, Chengjian, Liu, Dong, Yang, Chenyang
--In many optimization problems in wireless communications, the expressions of objective function or constraints are hard or even impossible to derive, which makes the solutions difficult to find. In this paper, we propose a model-free learning framework to solve constrained optimization problems without the supervision of the optimal solution. Neural networks are used respectively for parameterizing the function to be optimized, parameterizing the Lagrange multiplier associated with instantaneous constraints, and approximating the unknown objective function or constraints. We provide learning algorithms to train all the neural networks simultaneously, and reveal the connections of the proposed framework with reinforcement learning. Numerical and simulation results validate the proposed framework and demonstrate the efficiency of model-free learning by taking power control problem as an example. I NTRODUCTION V arious resource allocation and transceivers in wireless networks, such as power allocation, beamforming, and caching policy, can be designed by solving optimization problems with constraints, say imposed by the maximal transmit power, cache size, and the minimal data rate requirement [1, 2]. Depending on the applications, the objective function, constraints and the policy to be optimized may vary in different timescales.
Unsupervised Deep Learning for Ultra-reliable and Low-latency Communications
Sun, Chengjian, Yang, Chenyang
In this paper, we study how to solve resource allocation problems in ultra-reliable and low-latency communications by unsupervised deep learning, which often yield functional optimization problems with quality-of-service (QoS) constraints. We take a joint power and bandwidth allocation problem as an example, which minimizes the total bandwidth required to guarantee the QoS of each user in terms of the delay bound and overall packet loss probability. The global optimal solution is found in a symmetric scenario. A neural network was introduced to find an approximated optimal solution in general scenarios, where the QoS is ensured by using the property that the optimal solution should satisfy as the "supervision signal". Simulation results show that the learning-based solution performs the same as the optimal solution in the symmetric scenario, and can save around 40% bandwidth with respect to the state-of-the-art policy.
Learning to Optimize with Unsupervised Learning: Training Deep Neural Networks for URLLC
Sun, Chengjian, Yang, Chenyang
Learning the optimized solution as a function of environmental parameters is effective in solving numerical optimization in real time for time-sensitive applications. Existing works of learning to optimize train deep neural networks (DNN) with labels, and the learnt solution are inaccurate, which cannot be employed to ensure the stringent quality of service. In this paper, we propose a framework to learn the latent function with unsupervised deep learning, where the property that the optimal solution should satisfy is used as the "supervision signal" implicitly. The framework is applicable to both functional and variable optimization problems with constraints. We take a variable optimization problem in ultra-reliable and low-latency communications as an example, which demonstrates that the ultra-high reliability can be supported by the DNN without supervision labels.