Goto

Collaborating Authors

 Sumida, Ronald A.


Propagation Filters in PDS Networks for Sequencing and Ambiguity Resolution

Neural Information Processing Systems

We present a Parallel Distributed Semantic (PDS) Network architecture that addresses the problems of sequencing and ambiguity resolution in natural language understanding. A PDS Network stores phrases and their meanings using multiple PDP networks, structured in the form of a semantic net. A mechanism called Propagation Filters is employed: (1) to control communication between networks, (2) to properly sequence the components of a phrase, and (3) to resolve ambiguities. Simulation results indicate that PDS Networks and Propagation Filters can successfully represent high-level knowledge, can be trained relatively quickly, and provide for parallel inferencing at the knowledge level. 1 INTRODUCTION Backpropagation has shown considerable potential for addressing problems in natural language processing (NLP). However, the traditional PDP [Rumelhart and McClelland, 1986] approach of using one (or a small number) of backprop networks for NLP has been plagued by a number of problems: (1) it has been largely unsuccessful at representing high-level knowledge, (2) the networks are slow to train, and (3) they are sequential at the knowledge level.


Propagation Filters in PDS Networks for Sequencing and Ambiguity Resolution

Neural Information Processing Systems

We present a Parallel Distributed Semantic (PDS) Network architecture that addresses the problems of sequencing and ambiguity resolution in natural language understanding. A PDS Network stores phrases and their meanings using multiple PDP networks, structured in the form of a semantic net.A mechanism called Propagation Filters is employed: (1) to control communication between networks, (2) to properly sequence the components of a phrase, and (3) to resolve ambiguities. Simulation results indicate that PDS Networks and Propagation Filters can successfully represent high-levelknowledge, can be trained relatively quickly, and provide for parallel inferencing at the knowledge level. 1 INTRODUCTION Backpropagation has shown considerable potential for addressing problems in natural languageprocessing (NLP). However, the traditional PDP [Rumelhart and McClelland, 1986] approach of using one (or a small number) of backprop networks for NLP has been plagued by a number of problems: (1) it has been largely unsuccessful atrepresenting high-level knowledge, (2) the networks are slow to train, and (3) they are sequential at the knowledge level. A solution to these problems is to represent high-level knowledge structures over a large number of smaller PDP net-233 234 Sumida and Dyer works.


Propagation Filters in PDS Networks for Sequencing and Ambiguity Resolution

Neural Information Processing Systems

We present a Parallel Distributed Semantic (PDS) Network architecture that addresses the problems of sequencing and ambiguity resolution in natural language understanding. A PDS Network stores phrases and their meanings using multiple PDP networks, structured in the form of a semantic net. A mechanism called Propagation Filters is employed: (1) to control communication between networks, (2) to properly sequence the components of a phrase, and (3) to resolve ambiguities. Simulation results indicate that PDS Networks and Propagation Filters can successfully represent high-level knowledge, can be trained relatively quickly, and provide for parallel inferencing at the knowledge level. 1 INTRODUCTION Backpropagation has shown considerable potential for addressing problems in natural language processing (NLP). However, the traditional PDP [Rumelhart and McClelland, 1986] approach of using one (or a small number) of backprop networks for NLP has been plagued by a number of problems: (1) it has been largely unsuccessful at representing high-level knowledge, (2) the networks are slow to train, and (3) they are sequential at the knowledge level.