Goto

Collaborating Authors

 Sumbul, Gencer


MaskSDM with Shapley values to improve flexibility, robustness, and explainability in species distribution modeling

arXiv.org Artificial Intelligence

Species Distribution Models (SDMs) play a vital role in biodiversity research, conservation planning, and ecological niche modeling by predicting species distributions based on environmental conditions. The selection of predictors is crucial, strongly impacting both model accuracy and how well the predictions reflect ecological patterns. To ensure meaningful insights, input variables must be carefully chosen to match the study objectives and the ecological requirements of the target species. However, existing SDMs, including both traditional and deep learning-based approaches, often lack key capabilities for variable selection: (i) flexibility to choose relevant predictors at inference without retraining; (ii) robustness to handle missing predictor values without compromising accuracy; and (iii) explainability to interpret and accurately quantify each predictor's contribution. To overcome these limitations, we introduce MaskSDM, a novel deep learning-based SDM that enables flexible predictor selection by employing a masked training strategy. This approach allows the model to make predictions with arbitrary subsets of input variables while remaining robust to missing data. It also provides a clearer understanding of how adding or removing a given predictor affects model performance and predictions. Additionally, MaskSDM leverages Shapley values for precise predictor contribution assessments, improving upon traditional approximations. We evaluate MaskSDM on the global sPlotOpen dataset, modeling the distributions of 12,738 plant species. Our results show that MaskSDM outperforms imputation-based methods and approximates models trained on specific subsets of variables. These findings underscore MaskSDM's potential to increase the applicability and adoption of SDMs, laying the groundwork for developing foundation models in SDMs that can be readily applied to diverse ecological applications.


Deep Metric Learning-Based Semi-Supervised Regression With Alternate Learning

arXiv.org Artificial Intelligence

This paper introduces a novel deep metric learning-based semi-supervised regression (DML-S2R) method for parameter estimation problems. The proposed DML-S2R method aims to mitigate the problems of insufficient amount of labeled samples without collecting any additional sample with a target value. To this end, it is made up of two main steps: i) pairwise similarity modeling with scarce labeled data; and ii) triplet-based metric learning with abundant unlabeled data. The first step aims to model pairwise sample similarities by using a small number of labeled samples. This is achieved by estimating the target value differences of labeled samples with a Siamese neural network (SNN). The second step aims to learn a triplet-based metric space (in which similar samples are close to each other and dissimilar samples are far apart from each other) when the number of labeled samples is insufficient. This is achieved by employing the SNN of the first step for triplet-based deep metric learning that exploits not only labeled samples but also unlabeled samples. For the end-to-end training of DML-S2R, we investigate an alternate learning strategy for the two steps. Due to this strategy, the encoded information in each step becomes a guidance for learning phase of the other step. The experimental results confirm the success of DML-S2R compared to the state-of-the-art semi-supervised regression methods. The code of the proposed method is publicly available at https://git.tu-berlin.de/rsim/DML-S2R.


A Comparative Study of Deep Learning Loss Functions for Multi-Label Remote Sensing Image Classification

arXiv.org Artificial Intelligence

This paper analyzes and compares different deep learning loss functions in the framework of multi-label remote sensing (RS) image scene classification problems. We consider seven loss functions: 1) cross-entropy loss; 2) focal loss; 3) weighted cross-entropy loss; 4) Hamming loss; 5) Huber loss; 6) ranking loss; and 7) sparseMax loss. All the considered loss functions are analyzed for the first time in RS. After a theoretical analysis, an experimental analysis is carried out to compare the considered loss functions in terms of their: 1) overall accuracy; 2) class imbalance awareness (for which the number of samples associated to each class significantly varies); 3) convexibility and differentiability; and 4) learning efficiency (i.e., convergence speed). On the basis of our analysis, some guidelines are derived for a proper selection of a loss function in multi-label RS scene classification problems.