Goto

Collaborating Authors

 Suganuma, Masanori


RP-SLAM: Real-time Photorealistic SLAM with Efficient 3D Gaussian Splatting

arXiv.org Artificial Intelligence

3D Gaussian Splatting has emerged as a promising technique for high-quality 3D rendering, leading to increasing interest in integrating 3DGS into realism SLAM systems. However, existing methods face challenges such as Gaussian primitives redundancy, forgetting problem during continuous optimization, and difficulty in initializing primitives in monocular case due to lack of depth information. In order to achieve efficient and photorealistic mapping, we propose RP-SLAM, a 3D Gaussian splatting-based vision SLAM method for monocular and RGB-D cameras. RP-SLAM decouples camera poses estimation from Gaussian primitives optimization and consists of three key components. Firstly, we propose an efficient incremental mapping approach to achieve a compact and accurate representation of the scene through adaptive sampling and Gaussian primitives filtering. Secondly, a dynamic window optimization method is proposed to mitigate the forgetting problem and improve map consistency. Finally, for the monocular case, a monocular keyframe initialization method based on sparse point cloud is proposed to improve the initialization accuracy of Gaussian primitives, which provides a geometric basis for subsequent optimization. The results of numerous experiments demonstrate that RP-SLAM achieves state-of-the-art map rendering accuracy while ensuring real-time performance and model compactness.


Rethinking Unsupervised Domain Adaptation for Semantic Segmentation

arXiv.org Artificial Intelligence

Unsupervised domain adaptation (UDA) adapts a model trained on one domain (called source) to a novel domain (called target) using only unlabeled data. Due to its high annotation cost, researchers have developed many UDA methods for semantic segmentation, which assume no labeled sample is available in the target domain. We question the practicality of this assumption for two reasons. First, after training a model with a UDA method, we must somehow verify the model before deployment. Second, UDA methods have at least a few hyper-parameters that need to be determined. The surest solution to these is to evaluate the model using validation data, i.e., a certain amount of labeled target-domain samples. This question about the basic assumption of UDA leads us to rethink UDA from a data-centric point of view. Specifically, we assume we have access to a minimum level of labeled data. Then, we ask how much is necessary to find good hyper-parameters of existing UDA methods. We then consider what if we use the same data for supervised training of the same model, e.g., finetuning. We conducted experiments to answer these questions with popular scenarios, {GTA5, SYNTHIA}$\rightarrow$Cityscapes. We found that i) choosing good hyper-parameters needs only a few labeled images for some UDA methods whereas a lot more for others; and ii) simple finetuning works surprisingly well; it outperforms many UDA methods if only several dozens of labeled images are available.


Improved Few-shot Segmentation by Redefinition of the Roles of Multi-level CNN Features

arXiv.org Artificial Intelligence

This study is concerned with few-shot segmentation, i.e., segmenting the region of an unseen object class in a query image, given support image(s) of its instances. The current methods rely on the pretrained CNN features of the support and query images. The key to good performance depends on the proper fusion of their mid-level and high-level features; the former contains shape-oriented information, while the latter has class-oriented information. Current state-of-the-art methods follow the approach of Tian et al., which gives the mid-level features the primary role and the high-level features the secondary role. In this paper, we reinterpret this widely employed approach by redifining the roles of the multi-level features; we swap the primary and secondary roles. Specifically, we regard that the current methods improve the initial estimate generated from the high-level features using the mid-level features. This reinterpretation suggests a new application of the current methods: to apply the same network multiple times to iteratively update the estimate of the object's region, starting from its initial estimate. Our experiments show that this method is effective and has updated the previous state-of-the-art on COCO-20$^i$ in the 1-shot and 5-shot settings and on PASCAL-5$^i$ in the 1-shot setting.


Cross-Region Domain Adaptation for Class-level Alignment

arXiv.org Artificial Intelligence

Semantic segmentation requires a lot of training data, which necessitates costly annotation. There have been many studies on unsupervised domain adaptation (UDA) from one domain to another, e.g., from computer graphics to real images. However, there is still a gap in accuracy between UDA and supervised training on native domain data. It is arguably attributable to class-level misalignment between the source and target domain data. To cope with this, we propose a method that applies adversarial training to align two feature distributions in the target domain. It uses a self-training framework to split the image into two regions (i.e., trusted and untrusted), which form two distributions to align in the feature space. We term this approach cross-region adaptation (CRA) to distinguish from the previous methods of aligning different domain distributions, which we call cross-domain adaptation (CDA). CRA can be applied after any CDA method. Experimental results show that this always improves the accuracy of the combined CDA method, having updated the state-of-the-art.