Suda, Naveen
Dream Distillation: A Data-Independent Model Compression Framework
Bhardwaj, Kartikeya, Suda, Naveen, Marculescu, Radu
Model compression is eminently suited for deploying deep learning on IoT-devices. However, existing model compression techniques rely on access to the original or some alternate dataset. In this paper, we address the model compression problem when no real data is available, e.g., when data is private. To this end, we propose Dream Distillation, a data-independent model compression framework. Our experiments show that Dream Distillation can achieve 88.5% accuracy on the CIFAR-10 test set without actually training on the original data!
Rethinking Machine Learning Development and Deployment for Edge Devices
Lai, Liangzhen, Suda, Naveen
Machine learning (ML), especially deep learning is made possible by the availability of big data, enormous compute power and, often overlooked, development tools or frameworks. As the algorithms become mature and efficient, more and more ML inference is moving out of datacenters/cloud and deployed on edge devices. This model deployment process can be challenging as the deployment environment and requirements can be substantially different from those during model development. In this paper, we propose a new ML development and deployment approach that is specially designed and optimized for inference-only deployment on edge devices. We build a prototype and demonstrate that this approach can address all the deployment challenges and result in more efficient and high-quality solutions.
Federated Learning with Non-IID Data
Zhao, Yue, Li, Meng, Lai, Liangzhen, Suda, Naveen, Civin, Damon, Chandra, Vikas
Federated learning enables resource-constrained edge compute devices, such as mobile phones and IoT devices, to learn a shared model for prediction, while keeping the training data local. This decentralized approach to train models provides privacy, security, regulatory and economic benefits. In this work, we focus on the statistical challenge of federated learning when local data is non-IID. We first show that the accuracy of federated learning reduces significantly, by up to 55% for neural networks trained for highly skewed non-IID data, where each client device trains only on a single class of data. We further show that this accuracy reduction can be explained by the weight divergence, which can be quantified by the earth mover's distance (EMD) between the distribution over classes on each device and the population distribution. As a solution, we propose a strategy to improve training on non-IID data by creating a small subset of data which is globally shared between all the edge devices. Experiments show that accuracy can be increased by 30% for the CIFAR-10 dataset with only 5% globally shared data.