Suciu, Octavian
Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks
Shafahi, Ali, Huang, W. Ronny, Najibi, Mahyar, Suciu, Octavian, Studer, Christoph, Dumitras, Tudor, Goldstein, Tom
Data poisoning is an attack on machine learning models wherein the attacker adds examples to the training set to manipulate the behavior of the model at test time. This paper explores poisoning attacks on neural nets. The proposed attacks use clean-labels''; they don't require the attacker to have any control over the labeling of training data. They are also targeted; they control the behavior of the classifier on a specific test instance without degrading overall classifier performance. For example, an attacker could add a seemingly innocuous image (that is properly labeled) to a training set for a face recognition engine, and control the identity of a chosen person at test time.
Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks
Shafahi, Ali, Huang, W. Ronny, Najibi, Mahyar, Suciu, Octavian, Studer, Christoph, Dumitras, Tudor, Goldstein, Tom
Data poisoning is an attack on machine learning models wherein the attacker adds examples to the training set to manipulate the behavior of the model at test time. This paper explores poisoning attacks on neural nets. The proposed attacks use "clean-labels"; they don't require the attacker to have any control over the labeling of training data. They are also targeted; they control the behavior of the classifier on a specific test instance without degrading overall classifier performance. For example, an attacker could add a seemingly innocuous image (that is properly labeled) to a training set for a face recognition engine, and control the identity of a chosen person at test time. Because the attacker does not need to control the labeling function, poisons could be entered into the training set simply by leaving them on the web and waiting for them to be scraped by a data collection bot. We present an optimization-based method for crafting poisons, and show that just one single poison image can control classifier behavior when transfer learning is used. For full end-to-end training, we present a "watermarking" strategy that makes poisoning reliable using multiple ( 50) poisoned training instances. We demonstrate our method by generating poisoned frog images from the CIFAR dataset and using them to manipulate image classifiers.
Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks
Shafahi, Ali, Huang, W. Ronny, Najibi, Mahyar, Suciu, Octavian, Studer, Christoph, Dumitras, Tudor, Goldstein, Tom
Data poisoning is an attack on machine learning models wherein the attacker adds examples to the training set to manipulate the behavior of the model at test time. This paper explores poisoning attacks on neural nets. The proposed attacks use ``clean-labels''; they don't require the attacker to have any control over the labeling of training data. They are also targeted; they control the behavior of the classifier on a specific test instance without degrading overall classifier performance. For example, an attacker could add a seemingly innocuous image (that is properly labeled) to a training set for a face recognition engine, and control the identity of a chosen person at test time. Because the attacker does not need to control the labeling function, poisons could be entered into the training set simply by putting them online and waiting for them to be scraped by a data collection bot. We present an optimization-based method for crafting poisons, and show that just one single poison image can control classifier behavior when transfer learning is used. For full end-to-end training, we present a ``watermarking'' strategy that makes poisoning reliable using multiple (approx. 50) poisoned training instances. We demonstrate our method by generating poisoned frog images from the CIFAR dataset and using them to manipulate image classifiers.
Exploring Adversarial Examples in Malware Detection
Suciu, Octavian, Coull, Scott E., Johns, Jeffrey
The Convolutional Neural Network (CNN) architecture is increasingly being applied to new domains, such as malware detection, where it is able to learn malicious behavior from raw bytes extracted from executables. These architectures reach impressive performance with no feature engineering effort involved, but their robustness against active attackers is yet to be understood. Such malware detectors could face a new attack vector in the form of adversarial interference with the classification model. Existing evasion attacks intended to cause misclassification on test-time instances, which have been extensively studied for image classifiers, are not applicable because of the input semantics that prevents arbitrary changes to the binaries. This paper explores the area of adversarial examples for malware detection. By training an existing model on a production-scale dataset, we show that some previous attacks are less effective than initially reported, while simultaneously highlighting architectural weaknesses that facilitate new attack strategies for malware classification. Finally, we explore more generalizable attack strategies that increase the potential effectiveness of evasion attacks.
Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks
Shafahi, Ali, Huang, W. Ronny, Najibi, Mahyar, Suciu, Octavian, Studer, Christoph, Dumitras, Tudor, Goldstein, Tom
Data poisoning is a type of adversarial attack on machine learning models wherein the attacker adds examples to the training set to manipulate the behavior of the model at test time. This paper explores a broad class of poisoning attacks on neural nets. The proposed attacks use "clean-labels"; they don't require the attacker to have any control over the labeling of training data. They are also targeted; they control the behavior of the classifier on a specific test instance without noticeably degrading classifier performance on other instances. For example, an attacker could add a seemingly innocuous image (that is properly labeled) to a training set for a face recognition engine, and control the identity of a chosen person at test time. Because the attacker does not need to control the labeling function, poisons could be entered into the training set simply by putting them online and waiting for them to be scraped by a data collection bot. We present an optimization-based method for crafting poisons, and show that just one single poison image can control classifier behavior when transfer learning is used. For full end-to-end training, we present a "watermarking" strategy that makes poisoning reliable using multiple (~50) poisoned training instances. We demonstrate our method by generating poisoned frog images from the CIFAR dataset and using them to manipulate image classifiers.