Goto

Collaborating Authors

 Subramanian, Venkatapathy


StructFormer: Document Structure-based Masked Attention and its Impact on Language Model Pre-Training

arXiv.org Artificial Intelligence

Most state-of-the-art techniques for Language Models (LMs) today rely on transformer-based architectures and their ubiquitous attention mechanism. However, the exponential growth in computational requirements with longer input sequences confines Transformers to handling short passages. Recent efforts have aimed to address this limitation by introducing selective attention mechanisms, notably local and global attention. While sparse attention mechanisms, akin to full attention in being Turing-complete, have been theoretically established, their practical impact on pre-training remains unexplored. This study focuses on empirically assessing the influence of global attention on BERT pre-training. The primary steps involve creating an extensive corpus of structure-aware text through arXiv data, alongside a text-only counterpart. We carry out pre-training on these two datasets, investigate shifts in attention patterns, and assess their implications for downstream tasks. Our analysis underscores the significance of incorporating document structure into LM models, demonstrating their capacity to excel in more abstract tasks, such as document understanding.


UDAAN: Machine Learning based Post-Editing tool for Document Translation

arXiv.org Artificial Intelligence

We introduce UDAAN, an open-source post-editing tool that can reduce manual editing efforts to quickly produce publishable-standard documents in several Indic languages. UDAAN has an end-to-end Machine Translation (MT) plus post-editing pipeline wherein users can upload a document to obtain raw MT output. Further, users can edit the raw translations using our tool. UDAAN offers several advantages: a) Domain-aware, vocabulary-based lexical constrained MT. b) source-target and target-target lexicon suggestions for users. Replacements are based on the source and target texts lexicon alignment. c) Translation suggestions are based on logs created during user interaction. d) Source-target sentence alignment visualisation that reduces the cognitive load of users during editing. e) Translated outputs from our tool are available in multiple formats: docs, latex, and PDF. We also provide the facility to use around 100 in-domain dictionaries for lexicon-aware machine translation. Although we limit our experiments to English-to-Hindi translation, our tool is independent of the source and target languages. Experimental results based on the usage of the tools and users feedback show that our tool speeds up the translation time by approximately a factor of three compared to the baseline method of translating documents from scratch. Our tool is available for both Windows and Linux platforms. The tool is open-source under MIT license, and the source code can be accessed from our website at https://www.udaanproject.org. Demonstration and tutorial videos for various features of our tool can be accessed at https://www.youtube.com/channel/UClfK7iC8J7b22bj3GwAUaCw. Our MT pipeline can be accessed at https://udaaniitb.aicte-india.org/udaan/translate/.