Goto

Collaborating Authors

 Subramanian, Suvinay


RAGO: Systematic Performance Optimization for Retrieval-Augmented Generation Serving

arXiv.org Artificial Intelligence

Retrieval-augmented generation (RAG), which combines large language models (LLMs) with retrievals from external knowledge databases, is emerging as a popular approach for reliable LLM serving. However, efficient RAG serving remains an open challenge due to the rapid emergence of many RAG variants and the substantial differences in workload characteristics across them. In this paper, we make three fundamental contributions to advancing RAG serving. First, we introduce RAGSchema, a structured abstraction that captures the wide range of RAG algorithms, serving as a foundation for performance optimization. Second, we analyze several representative RAG workloads with distinct RAGSchema, revealing significant performance variability across these workloads. Third, to address this variability and meet diverse performance requirements, we propose RAGO (Retrieval-Augmented Generation Optimizer), a system optimization framework for efficient RAG serving. Our evaluation shows that RAGO achieves up to a 2x increase in QPS per chip and a 55% reduction in time-to-first-token latency compared to RAG systems built on LLM-system extensions.


Learning to Keep a Promise: Scaling Language Model Decoding Parallelism with Learned Asynchronous Decoding

arXiv.org Artificial Intelligence

Decoding with autoregressive large language models (LLMs) traditionally occurs sequentially, generating one token after another. An emerging line of work explored parallel decoding by identifying and simultaneously generating semantically independent chunks of LLM responses. However, these techniques rely on hand-crafted heuristics tied to syntactic structures like lists and paragraphs, making them rigid and imprecise. We present PASTA, a learning-based system that teaches LLMs to identify semantic independence and express parallel decoding opportunities in their own responses. At its core are PASTA-LANG and its interpreter: PASTA-LANG is an annotation language that enables LLMs to express semantic independence in their own responses; the language interpreter acts on these annotations to orchestrate parallel decoding on-the-fly at inference time. Through a two-stage finetuning process, we train LLMs to generate PASTA-LANG annotations that optimize both response quality and decoding speed. Evaluation on AlpacaEval, an instruction following benchmark, shows that our approach Pareto-dominates existing methods in terms of decoding speed and response quality; our results demonstrate geometric mean speedups ranging from 1.21x to 1.93x with corresponding quality changes of +2.2% to -7.1%, measured by length-controlled win rates against sequential decoding baseline.


The Journey Matters: Average Parameter Count over Pre-training Unifies Sparse and Dense Scaling Laws

arXiv.org Artificial Intelligence

Pruning eliminates unnecessary parameters in neural networks; it offers a promising solution to the growing computational demands of large language models (LLMs). While many focus on post-training pruning, sparse pre-training--which combines pruning and pre-training into a single phase--provides a simpler alternative. In this work, we present the first systematic exploration of optimal sparse pre-training configurations for LLMs through an examination of 80 unique pruning schedules across different sparsity levels and training durations. We find that initiating pruning at 25% of total training compute and concluding at 75% achieves near-optimal final evaluation loss. These findings provide valuable insights for efficient and effective sparse pre-training of LLMs. Furthermore, we propose a new scaling law that modifies the Chinchilla scaling law to use the average parameter count over pre-training. Through empirical and theoretical validation, we demonstrate that this modified scaling law accurately models evaluation loss for both sparsely and densely pre-trained LLMs, unifying scaling laws across pre-training paradigms. Our findings indicate that while sparse pre-training achieves the same final model quality as dense pre-training for equivalent compute budgets, it provides substantial benefits through reduced model size, enabling significant potential computational savings during inference.


Effective Interplay between Sparsity and Quantization: From Theory to Practice

arXiv.org Artificial Intelligence

The increasing size of deep neural networks necessitates effective model compression to improve computational efficiency and reduce their memory footprint. Sparsity and quantization are two prominent compression methods that have individually demonstrated significant reduction in computational and memory footprints while preserving model accuracy. While effective, the interplay between these two methods remains an open question. In this paper, we investigate the interaction between these two methods and assess whether their combination impacts final model accuracy. We mathematically prove that applying sparsity before quantization is the optimal sequence for these operations, minimizing error in computation. Our empirical studies across a wide range of models, including OPT and Llama model families (125M-8B) and ViT corroborate these theoretical findings. In addition, through rigorous analysis, we demonstrate that sparsity and quantization are not orthogonal; their interaction can significantly harm model accuracy, with quantization error playing a dominant role in this degradation. Our findings extend to the efficient deployment of large models in resource-limited compute platforms and reduce serving cost, offering insights into best practices for applying these compression methods to maximize efficacy without compromising accuracy.


Progressive Gradient Flow for Robust N:M Sparsity Training in Transformers

arXiv.org Artificial Intelligence

N:M Structured sparsity has garnered significant interest as a result of relatively modest overhead and improved efficiency. Additionally, this form of sparsity holds considerable appeal for reducing the memory footprint owing to their modest representation overhead. There have been efforts to develop training recipes for N:M structured sparsity, they primarily focus on low-sparsity regions ($\sim$50\%). Nonetheless, performance of models trained using these approaches tends to decline when confronted with high-sparsity regions ($>$80\%). In this work, we study the effectiveness of existing sparse training recipes at \textit{high-sparsity regions} and argue that these methods fail to sustain the model quality on par with low-sparsity regions. We demonstrate that the significant factor contributing to this disparity is the presence of elevated levels of induced noise in the gradient magnitudes. To mitigate this undesirable effect, we employ decay mechanisms to progressively restrict the flow of gradients towards pruned elements. Our approach improves the model quality by up to 2$\%$ and 5$\%$ in vision and language models at high sparsity regime, respectively. We also evaluate the trade-off between model accuracy and training compute cost in terms of FLOPs. At iso-training FLOPs, our method yields better performance compared to conventional sparse training recipes, exhibiting an accuracy improvement of up to 2$\%$. The source code is available at https://github.com/abhibambhaniya/progressive_gradient_flow_nm_sparsity.


JaxPruner: A concise library for sparsity research

arXiv.org Artificial Intelligence

This paper introduces JaxPruner, an open-source JAX-based pruning and sparse training library for machine learning research. JaxPruner aims to accelerate research on sparse neural networks by providing concise implementations of popular pruning and sparse training algorithms with minimal memory and latency overhead. Algorithms implemented in JaxPruner use a common API and work seamlessly with the popular optimization library Optax, which, in turn, enables easy integration with existing JAX based libraries. We demonstrate this ease of integration by providing examples in four different codebases: Scenic, t5x, Dopamine and FedJAX and provide baseline experiments on popular benchmarks.


TPU v4: An Optically Reconfigurable Supercomputer for Machine Learning with Hardware Support for Embeddings

arXiv.org Artificial Intelligence

In response to innovations in machine learning (ML) models, production workloads changed radically and rapidly. TPU v4 is the fifth Google domain specific architecture (DSA) and its third supercomputer for such ML models. Optical circuit switches (OCSes) dynamically reconfigure its interconnect topology to improve scale, availability, utilization, modularity, deployment, security, power, and performance; users can pick a twisted 3D torus topology if desired. Much cheaper, lower power, and faster than Infiniband, OCSes and underlying optical components are <5% of system cost and <3% of system power. Each TPU v4 includes SparseCores, dataflow processors that accelerate models that rely on embeddings by 5x-7x yet use only 5% of die area and power. Deployed since 2020, TPU v4 outperforms TPU v3 by 2.1x and improves performance/Watt by 2.7x. The TPU v4 supercomputer is 4x larger at 4096 chips and thus ~10x faster overall, which along with OCS flexibility helps large language models. For similar sized systems, it is ~4.3x-4.5x faster than the Graphcore IPU Bow and is 1.2x-1.7x faster and uses 1.3x-1.9x less power than the Nvidia A100. TPU v4s inside the energy-optimized warehouse scale computers of Google Cloud use ~3x less energy and produce ~20x less CO2e than contemporary DSAs in a typical on-premise data center.


STEP: Learning N:M Structured Sparsity Masks from Scratch with Precondition

arXiv.org Artificial Intelligence

Recent innovations on hardware (e.g. Nvidia A100) have motivated learning N:M structured sparsity masks from scratch for fast model inference. However, state-of-the-art learning recipes in this regime (e.g. SR-STE) are proposed for non-adaptive optimizers like momentum SGD, while incurring non-trivial accuracy drop for Adam-trained models like attention-based LLMs. In this paper, we first demonstrate such gap origins from poorly estimated second moment (i.e. variance) in Adam states given by the masked weights. We conjecture that learning N:M masks with Adam should take the critical regime of variance estimation into account. In light of this, we propose STEP, an Adam-aware recipe that learns N:M masks with two phases: first, STEP calculates a reliable variance estimate (precondition phase) and subsequently, the variance remains fixed and is used as a precondition to learn N:M masks (mask-learning phase). STEP automatically identifies the switching point of two phases by dynamically sampling variance changes over the training trajectory and testing the sample concentration. Empirically, we evaluate STEP and other baselines such as ASP and SR-STE on multiple tasks including CIFAR classification, machine translation and LLM fine-tuning (BERT-Base, GPT-2). We show STEP mitigates the accuracy drop of baseline recipes and is robust to aggressive structured sparsity ratios.