Goto

Collaborating Authors

 Subramanian, Sandeep


Pixtral 12B

arXiv.org Artificial Intelligence

We introduce Pixtral-12B, a 12--billion-parameter multimodal language model. Pixtral-12B is trained to understand both natural images and documents, achieving leading performance on various multimodal benchmarks, surpassing a number of larger models. Unlike many open-source models, Pixtral is also a cutting-edge text model for its size, and does not compromise on natural language performance to excel in multimodal tasks. Pixtral uses a new vision encoder trained from scratch, which allows it to ingest images at their natural resolution and aspect ratio. This gives users flexibility on the number of tokens used to process an image. Pixtral is also able to process any number of images in its long context window of 128K tokens. Pixtral 12B substanially outperforms other open models of similar sizes (Llama-3.2 11B \& Qwen-2-VL 7B). It also outperforms much larger open models like Llama-3.2 90B while being 7x smaller. We further contribute an open-source benchmark, MM-MT-Bench, for evaluating vision-language models in practical scenarios, and provide detailed analysis and code for standardized evaluation protocols for multimodal LLMs. Pixtral-12B is released under Apache 2.0 license.


Nemotron-4 340B Technical Report

arXiv.org Artificial Intelligence

We release the Nemotron-4 340B model family, including Nemotron-4-340B-Base, Nemotron-4-340B-Instruct, and Nemotron-4-340B-Reward. Our models are open access under the NVIDIA Open Model License Agreement, a permissive model license that allows distribution, modification, and use of the models and its outputs. These models perform competitively to open access models on a wide range of evaluation benchmarks, and were sized to fit on a single DGX H100 with 8 GPUs when deployed in FP8 precision. We believe that the community can benefit from these models in various research studies and commercial applications, especially for generating synthetic data to train smaller language models. Notably, over 98% of data used in our model alignment process is synthetically generated, showcasing the effectiveness of these models in generating synthetic data. To further support open research and facilitate model development, we are also open-sourcing the synthetic data generation pipeline used in our model alignment process.


Nemotron-4 15B Technical Report

arXiv.org Artificial Intelligence

For example, (Hoffmann et al., 2022) shows that given two roughly IsoFLOP GPT models with a similar data distribution, a 65-billion-parameter model on 1.4 trillion tokens and a 280-billion-parameter model on 300 billion tokens, the 65B model has better accuracy on downstream tasks. This trade-off of allocating compute towards training on more data as opposed to increasing model size is particularly appealing from an inference perspective, reducing latency and the amount of compute needed to serve models. As a consequence, a major focus of language modeling training efforts has shifted to collecting high-quality multi-trillion token datasets from public sources such as Common Crawl.


Retrieval meets Long Context Large Language Models

arXiv.org Artificial Intelligence

Extending the context window of large language models (LLMs) is getting popular recently, while the solution of augmenting LLMs with retrieval has existed for years. The natural questions are: i) Retrieval-augmentation versus long context window, which one is better for downstream tasks? In this work, we answer these questions by studying both solutions using two state-of-the-art pretrained LLMs, i.e., a proprietary 43B GPT and Llama2-70B. Perhaps surprisingly, we find that LLM with 4K context window using simple retrieval-augmentation at generation can achieve comparable performance to finetuned LLM with 16K context window via positional interpolation on long context tasks, while taking much less computation. More importantly, we demonstrate that retrieval can significantly improve the performance of LLMs regardless of their extended context window sizes. Our best model, retrieval-augmented Llama2-70B with 32K context window, outperforms GPT-3.5-turbo-16k and Davinci003 in terms of average score on nine long context tasks including question answering, query-based summarization, and in-context few-shot learning tasks. It also outperforms its non-retrieval Llama2-70B-32k baseline by a margin, while being much faster at generation. Our study provides general insights on the choice of retrieval-augmentation versus long context extension of LLM for practitioners. The long context large language models (LLM) have recently received a lot of attention in production (e.g., Anthropic, 2023; OpenAI, 2023b), research community (e.g., Chen et al., 2023; Liu et al., 2023; Tworkowski et al., 2023), and open source community (e.g., Kaiokendev, 2023).


Mixtral of Experts

arXiv.org Artificial Intelligence

We introduce Mixtral 8x7B, a Sparse Mixture of Experts (SMoE) language model. Mixtral has the same architecture as Mistral 7B, with the difference that each layer is composed of 8 feedforward blocks (i.e. experts). For every token, at each layer, a router network selects two experts to process the current state and combine their outputs. Even though each token only sees two experts, the selected experts can be different at each timestep. As a result, each token has access to 47B parameters, but only uses 13B active parameters during inference. Mixtral was trained with a context size of 32k tokens and it outperforms or matches Llama 2 70B and GPT-3.5 across all evaluated benchmarks. In particular, Mixtral vastly outperforms Llama 2 70B on mathematics, code generation, and multilingual benchmarks. We also provide a model fine-tuned to follow instructions, Mixtral 8x7B - Instruct, that surpasses GPT-3.5 Turbo, Claude-2.1, Gemini Pro, and Llama 2 70B - chat model on human benchmarks. Both the base and instruct models are released under the Apache 2.0 license.


Do Neural Dialog Systems Use the Conversation History Effectively? An Empirical Study

arXiv.org Artificial Intelligence

Neural generative models have been become increasingly popular when building conversational agents. They offer flexibility, can be easily adapted to new domains, and require minimal domain engineering. A common criticism of these systems is that they seldom understand or use the available dialog history effectively. In this paper, we take an empirical approach to understanding how these models use the available dialog history by studying the sensitivity of the models to artificially introduced unnatural changes or perturbations to their context at test time. We experiment with 10 different types of perturbations on 4 multi-turn dialog datasets and find that commonly used neural dialog architectures like recurrent and transformer-based seq2seq models are rarely sensitive to most perturbations such as missing or reordering utterances, shuffling words, etc. Also, by open-sourcing our code, we believe that it will serve as a useful diagnostic tool for evaluating dialog systems in the future.


State-Reification Networks: Improving Generalization by Modeling the Distribution of Hidden Representations

arXiv.org Artificial Intelligence

Machine learning promises methods that generalize well from finite labeled data. However, the brittleness of existing neural net approaches is revealed by notable failures, such as the existence of adversarial examples that are misclassified despite being nearly identical to a training example, or the inability of recurrent sequence-processing nets to stay on track without teacher forcing. We introduce a method, which we refer to as \emph{state reification}, that involves modeling the distribution of hidden states over the training data and then projecting hidden states observed during testing toward this distribution. Our intuition is that if the network can remain in a familiar manifold of hidden space, subsequent layers of the net should be well trained to respond appropriately. We show that this state-reification method helps neural nets to generalize better, especially when labeled data are sparse, and also helps overcome the challenge of achieving robust generalization with adversarial training.


Towards Text Generation with Adversarially Learned Neural Outlines

Neural Information Processing Systems

Recent progress in deep generative models has been fueled by two paradigms -- autoregressive and adversarial models. We propose a combination of both approaches with the goal of learning generative models of text. Our method first produces a high-level sentence outline and then generates words sequentially, conditioning on both the outline and the previous outputs. We generate outlines with an adversarial model trained to approximate the distribution of sentences in a latent space induced by general-purpose sentence encoders. This provides strong, informative conditioning for the autoregressive stage. Our quantitative evaluations suggests that conditioning information from generated outlines is able to guide the autoregressive model to produce realistic samples, comparable to maximum-likelihood trained language models, even at high temperatures with multinomial sampling. Qualitative results also demonstrate that this generative procedure yields natural-looking sentences and interpolations.


Towards Text Generation with Adversarially Learned Neural Outlines

Neural Information Processing Systems

Recent progress in deep generative models has been fueled by two paradigms -- autoregressive and adversarial models. We propose a combination of both approaches with the goal of learning generative models of text. Our method first produces a high-level sentence outline and then generates words sequentially, conditioning on both the outline and the previous outputs. We generate outlines with an adversarial model trained to approximate the distribution of sentences in a latent space induced by general-purpose sentence encoders. This provides strong, informative conditioning for the autoregressive stage. Our quantitative evaluations suggests that conditioning information from generated outlines is able to guide the autoregressive model to produce realistic samples, comparable to maximum-likelihood trained language models, even at high temperatures with multinomial sampling. Qualitative results also demonstrate that this generative procedure yields natural-looking sentences and interpolations.


Neural Models for Key Phrase Detection and Question Generation

arXiv.org Artificial Intelligence

We propose a two-stage neural model to tackle question generation from documents. First, our model estimates the probability that word sequences in a document are ones that a human would pick when selecting candidate answers by training a neural key-phrase extractor on the answers in a question-answering corpus. Predicted key phrases then act as target answers and condition a sequence-to-sequence question-generation model with a copy mechanism. Empirically, our key-phrase extraction model significantly outperforms an entity-tagging baseline and existing rule-based approaches. We further demonstrate that our question generation system formulates fluent, answerable questions from key phrases. This two-stage system could be used to augment or generate reading comprehension datasets, which may be leveraged to improve machine reading systems or in educational settings.