Goto

Collaborating Authors

 Subramanian, Jayakumar


Behavior Optimized Image Generation

arXiv.org Artificial Intelligence

The last few years have witnessed great success on image generation, which has crossed the acceptance thresholds of aesthetics, making it directly applicable to personal and commercial applications. However, images, especially in marketing and advertising applications, are often created as a means to an end as opposed to just aesthetic concerns. The goal can be increasing sales, getting more clicks, likes, or image sales (in the case of stock businesses). Therefore, the generated images need to perform well on these key performance indicators (KPIs), in addition to being aesthetically good. In this paper, we make the first endeavor to answer the question of "How can one infuse the knowledge of the end-goal within the image generation process itself to create not just better-looking images but also "better-performing'' images?''. We propose BoigLLM, an LLM that understands both image content and user behavior. BoigLLM knows how an image should look to get a certain required KPI. We show that BoigLLM outperforms 13x larger models such as GPT-3.5 and GPT-4 in this task, demonstrating that while these state-of-the-art models can understand images, they lack information on how these images perform in the real world. To generate actual pixels of behavior-conditioned images, we train a diffusion-based model (BoigSD) to align with a proposed BoigLLM-defined reward. We show the performance of the overall pipeline on two datasets covering two different behaviors: a stock dataset with the number of forward actions as the KPI and a dataset containing tweets with the total likes as the KPI, denoted as BoigBench. To advance research in the direction of utility-driven image generation and understanding, we release BoigBench, a benchmark dataset containing 168 million enterprise tweets with their media, brand account names, time of post, and total likes.


Mean-field games among teams

arXiv.org Artificial Intelligence

In this paper, we present a model of a game among teams. Each team consists of a homogeneous population of agents. Agents within a team are cooperative while the teams compete with other teams. The dynamics and the costs are coupled through the empirical distribution (or the mean field) of the state of agents in each team. This mean-field is assumed to be observed by all agents. Agents have asymmetric information (also called a non-classical information structure). We propose a mean-field based refinement of the Team-Nash equilibrium of the game, which we call mean-field Markov perfect equilibrium (MF-MPE). We identify a dynamic programming decomposition to characterize MF-MPE. We then consider the case where each team has a large number of players and present a mean-field approximation which approximates the game among large-population teams as a game among infinite-population teams. We show that MF-MPE of the game among teams of infinite population is easier to compute and is an $\varepsilon$-approximate MF-MPE of the game among teams of finite population.


Counterfactual Explanation Policies in RL

arXiv.org Artificial Intelligence

As Reinforcement Learning (RL) agents are increasingly employed in diverse decision-making problems using reward preferences, it becomes important to ensure that policies learned by these frameworks in mapping observations to a probability distribution of the possible actions are explainable. However, there is little to no work in the systematic understanding of these complex policies in a contrastive manner, i.e., what minimal changes to the policy would improve/worsen its performance to a desired level. In this work, we present COUNTERPOL, the first framework to analyze RL policies using counterfactual explanations in the form of minimal changes to the policy that lead to the desired outcome. We do so by incorporating counterfactuals in supervised learning in RL with the target outcome regulated using desired return. We establish a theoretical connection between Counterpol and widely used trust region-based policy optimization methods in RL. Extensive empirical analysis shows the efficacy of COUNTERPOL in generating explanations for (un)learning skills while keeping close to the original policy. Our results on five different RL environments with diverse state and action spaces demonstrate the utility of counterfactual explanations, paving the way for new frontiers in designing and developing counterfactual policies.


SARC: Soft Actor Retrospective Critic

arXiv.org Artificial Intelligence

The two-time scale nature of SAC, which is an actor-critic algorithm, is characterised by the fact that the critic estimate has not converged for the actor at any given time, but since the critic learns faster than the actor, it ensures eventual consistency between the two. Various strategies have been introduced in literature to learn better gradient estimates to help achieve better convergence. Since gradient estimates depend upon the critic, we posit that improving the critic can provide a better gradient estimate for the actor at each time. Utilizing this, we propose Soft Actor Retrospective Critic (SARC), where we augment the SAC critic loss with another loss term - retrospective loss - leading to faster critic convergence and consequently, better policy gradient estimates for the actor. An existing implementation of SAC can be easily adapted to SARC with minimal modifications. Through extensive experimentation and analysis, we show that SARC provides consistent improvement over SAC on benchmark environments.


Differentiable Agent-based Epidemiology

arXiv.org Artificial Intelligence

Mechanistic simulators are an indispensable tool for epidemiology to explore the behavior of complex, dynamic infections under varying conditions and navigate uncertain environments. Agent-based models (ABMs) are an increasingly popular simulation paradigm that can represent the heterogeneity of contact interactions with granular detail and agency of individual behavior. However, conventional ABM frameworks are not differentiable and present challenges in scalability; due to which it is non-trivial to connect them to auxiliary data sources. In this paper, we introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation. GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources. This provides an array of practical benefits for calibration, forecasting, and evaluating policy interventions. We demonstrate the efficacy of GradABM via extensive experiments with real COVID-19 and influenza datasets.


Explaining RL Decisions with Trajectories

arXiv.org Artificial Intelligence

Explanation is a key component for the adoption of reinforcement learning (RL) in many real-world decision-making problems. In the literature, the explanation is often provided by saliency attribution to the features of the RL agent's state. In this work, we propose a complementary approach to these explanations, particularly for offline RL, where we attribute the policy decisions of a trained RL agent to the trajectories encountered by it during training. To do so, we encode trajectories in offline training data individually as well as collectively (encoding a set of trajectories). We then attribute policy decisions to a set of trajectories in this encoded space by estimating the sensitivity of the decision with respect to that set. Further, we demonstrate the effectiveness of the proposed approach in terms of quality of attributions as well as practical scalability in diverse environments that involve both discrete and continuous state and action spaces such as grid-worlds, video games (Atari) and continuous control (MuJoCo). We also conduct a human study on a simple navigation task to observe how their understanding of the task compares with data attributed for a trained RL policy. Keywords -- Explainable AI, Verifiability of AI Decisions, Explainable RL.


Robustness and sample complexity of model-based MARL for general-sum Markov games

arXiv.org Artificial Intelligence

Multi-agent reinforcement learning (MARL) is often modeled using the framework of Markov games (also called stochastic games or dynamic games). Most of the existing literature on MARL concentrates on zero-sum Markov games but is not applicable to general-sum Markov games. It is known that the best-response dynamics in general-sum Markov games are not a contraction. Therefore, different equilibria in general-sum Markov games can have different values. Moreover, the Q-function is not sufficient to completely characterize the equilibrium. Given these challenges, model based learning is an attractive approach for MARL in general-sum Markov games. In this paper, we investigate the fundamental question of \emph{sample complexity} for model-based MARL algorithms in general-sum Markov games. We show two results. We first use Hoeffding inequality based bounds to show that $\tilde{\mathcal{O}}( (1-\gamma)^{-4} \alpha^{-2})$ samples per state-action pair are sufficient to obtain a $\alpha$-approximate Markov perfect equilibrium with high probability, where $\gamma$ is the discount factor, and the $\tilde{\mathcal{O}}(\cdot)$ notation hides logarithmic terms. We then use Bernstein inequality based bounds to show that $\tilde{\mathcal{O}}( (1-\gamma)^{-1} \alpha^{-2} )$ samples are sufficient. To obtain these results, we study the robustness of Markov perfect equilibrium to model approximations. We show that the Markov perfect equilibrium of an approximate (or perturbed) game is always an approximate Markov perfect equilibrium of the original game and provide explicit bounds on the approximation error. We illustrate the results via a numerical example.


Medical Dead-ends and Learning to Identify High-risk States and Treatments

arXiv.org Artificial Intelligence

Machine learning has successfully framed many sequential decision making problems as either supervised prediction, or optimal decision-making policy identification via reinforcement learning. In data-constrained offline settings, both approaches may fail as they assume fully optimal behavior or rely on exploring alternatives that may not exist. We introduce an inherently different approach that identifies possible ``dead-ends'' of a state space. We focus on the condition of patients in the intensive care unit, where a ``medical dead-end'' indicates that a patient will expire, regardless of all potential future treatment sequences. We postulate ``treatment security'' as avoiding treatments with probability proportional to their chance of leading to dead-ends, present a formal proof, and frame discovery as an RL problem. We then train three independent deep neural models for automated state construction, dead-end discovery and confirmation. Our empirical results discover that dead-ends exist in real clinical data among septic patients, and further reveal gaps between secure treatments and those that were administered.


Renewal Monte Carlo: Renewal theory based reinforcement learning

arXiv.org Machine Learning

In this paper, we present an online reinforcement learning algorithm, called Renewal Monte Carlo (RMC), for infinite horizon Markov decision processes with a designated start state. RMC is a Monte Carlo algorithm and retains the advantages of Monte Carlo methods including low bias, simplicity, and ease of implementation while, at the same time, circumvents their key drawbacks of high variance and delayed (end of episode) updates. The key ideas behind RMC are as follows. First, under any reasonable policy, the reward process is ergodic. So, by renewal theory, the performance of a policy is equal to the ratio of expected discounted reward to the expected discounted time over a regenerative cycle. Second, by carefully examining the expression for performance gradient, we propose a stochastic approximation algorithm that only requires estimates of the expected discounted reward and discounted time over a regenerative cycle and their gradients. We propose two unbiased estimators for evaluating performance gradients---a likelihood ratio based estimator and a simultaneous perturbation based estimator---and show that for both estimators, RMC converges to a locally optimal policy. We generalize the RMC algorithm to post-decision state models and also present a variant that converges faster to an approximately optimal policy. We conclude by presenting numerical experiments on a randomly generated MDP, event-triggered communication, and inventory management.