Subramaniam, Arulkumar
Non-linear Motion Estimation for Video Frame Interpolation using Space-time Convolutions
Dutta, Saikat, Subramaniam, Arulkumar, Mittal, Anurag
Video frame interpolation aims to synthesize one or multiple frames between two consecutive frames in a video. It has a wide range of applications including slow-motion video generation, frame-rate up-scaling and developing video codecs. Some older works tackled this problem by assuming per-pixel linear motion between video frames. However, objects often follow a non-linear motion pattern in the real domain and some recent methods attempt to model per-pixel motion by non-linear models (e.g., quadratic). A quadratic model can also be inaccurate, especially in the case of motion discontinuities over time (i.e. sudden jerks) and occlusions, where some of the flow information may be invalid or inaccurate. In our paper, we propose to approximate the per-pixel motion using a space-time convolution network that is able to adaptively select the motion model to be used. Specifically, we are able to softly switch between a linear and a quadratic model. Towards this end, we use an end-to-end 3D CNN encoder-decoder architecture over bidirectional optical flows and occlusion maps to estimate the non-linear motion model of each pixel. Further, a motion refinement module is employed to refine the non-linear motion and the interpolated frames are estimated by a simple warping of the neighboring frames with the estimated per-pixel motion. Through a set of comprehensive experiments, we validate the effectiveness of our model and show that our method outperforms state-of-the-art algorithms on four datasets (Vimeo, DAVIS, HD and GoPro).
Deep Neural Networks with Inexact Matching for Person Re-Identification
Subramaniam, Arulkumar, Chatterjee, Moitreya, Mittal, Anurag
Person Re-Identification is the task of matching images of a person across multiple camera views. Almost all prior approaches address this challenge by attempting to learn the possible transformations that relate the different views of a person from a training corpora. Then, they utilize these transformation patterns for matching a query image to those in a gallery image bank at test time. This necessitates learning good feature representations of the images and having a robust feature matching technique. Deep learning approaches, such as Convolutional Neural Networks (CNN), simultaneously do both and have shown great promise recently. In this work, we propose two CNN-based architectures for Person Re-Identification. In the first, given a pair of images, we extract feature maps from these images via multiple stages of convolution and pooling. A novel inexact matching technique then matches pixels in the first representation with those of the second. Furthermore, we search across a wider region in the second representation for matching. Our novel matching technique allows us to tackle the challenges posed by large viewpoint variations, illumination changes or partial occlusions. Our approach shows a promising performance and requires only about half the parameters as a current state-of-the-art technique. Nonetheless, it also suffers from false matches at times. In order to mitigate this issue, we propose a fused architecture that combines our inexact matching pipeline with a state-of-the-art exact matching technique. We observe substantial gains with the fused model over the current state-of-the-art on multiple challenging datasets of varying sizes, with gains of up to about 21%.