Not enough data to create a plot.
Try a different view from the menu above.
Su, Zhou
FortisAVQA and MAVEN: a Benchmark Dataset and Debiasing Framework for Robust Multimodal Reasoning
Ma, Jie, Gao, Zhitao, Chai, Qi, Liu, Jun, Wang, Pinghui, Tao, Jing, Su, Zhou
--Audio-Visual Question Answering (A VQA) is a challenging multimodal reasoning task requiring intelligent systems to answer natural language queries based on paired audio-video inputs accurately. However, existing A VQA approaches often suffer from overfitting to dataset biases, leading to poor robustness. T o address these challenges, we first introduce a novel dataset, FortisA VQA, constructed in two stages: (1) rephrasing questions in the test split of the public MUSIC-A VQA dataset and (2) introducing distribution shifts across questions. The first stage expands the test space with greater diversity, while the second enables a refined robustness evaluation across rare, frequent, and overall question distributions. Second, we introduce a robust Multimodal Audio-Visual Epistemic Network (MA VEN) that leverages a multifaceted cycle collaborative debiasing strategy to mitigate bias learning. Experimental results demonstrate that our architecture achieves state-of-the-art performance on FortisA VQA, with a notable improvement of 7.81%. Additionally, our evaluation reveals the limited robustness of existing multimodal QA methods. We also verify the plug-and-play capability of our strategy by integrating it with various baseline models across both datasets. UMANS possess the extraordinary capacity to seam-lessly integrate auditory and visual cues, effectively establishing a cohesive relationship between visual and auditory stimuli [1-3]. Jie Ma, Pinghui Wang, Jing Tao and Zhou Su are with the Ministry of Education of Key Laboratory for Intelligent Networks and Network Security, School of Cyber Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China. Zhitao Gao and Jun Liu are with the Shannxi Provincial Key Laboratory of Big Data Knowledge Engineering, School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China. Qi Chai is with the Information Hub, Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, 510000, China. The question in current A VQA datasets is generated by a limited set of predefined templates, which may not be in line with the real-world scenario. Our findings indicate that existing methods such as STG [6] are not robust, which may be attributed to excessive bias learning, such as memorizing statistical regularities between critical question words and answers. It requires the system to learn high-order interaction representations of the concepts encompassed with audio, video, and language modalities. As is known to us [8-10], the high-level reasoning ability of the system mainly relies on large-scale data that does not contain harmful biases or statistical regularities. However, completely avoiding the negative bias in datasets seems challenging [11] due to the inherent skewness in real-world data distributions.
Cross-Domain Continual Learning for Edge Intelligence in Wireless ISAC Networks
Hu, Jingzhi, Li, Xin, Su, Zhou, Luo, Jun
In wireless networks with integrated sensing and communications (ISAC), edge intelligence (EI) is expected to be developed at edge devices (ED) for sensing user activities based on channel state information (CSI). However, due to the CSI being highly specific to users' characteristics, the CSI-activity relationship is notoriously domain dependent, essentially demanding EI to learn sufficient datasets from various domains in order to gain cross-domain sensing capability. This poses a crucial challenge owing to the EDs' limited resources, for which storing datasets across all domains will be a significant burden. In this paper, we propose the EdgeCL framework, enabling the EI to continually learn-then-discard each incoming dataset, while remaining resilient to catastrophic forgetting. We design a transformer-based discriminator for handling sequences of noisy and nonequispaced CSI samples. Besides, we propose a distilled core-set based knowledge retention method with robustness-enhanced optimization to train the discriminator, preserving its performance for previous domains while preventing future forgetting. Experimental evaluations show that EdgeCL achieves 89% of performance compared to cumulative training while consuming only 3% of its memory, mitigating forgetting by 79%.
Large Model Based Agents: State-of-the-Art, Cooperation Paradigms, Security and Privacy, and Future Trends
Wang, Yuntao, Pan, Yanghe, Su, Zhou, Deng, Yi, Zhao, Quan, Du, Linkang, Luan, Tom H., Kang, Jiawen, Niyato, Dusit
With the rapid advancement of large models (LMs), the development of general-purpose intelligent agents powered by LMs has become a reality. It is foreseeable that in the near future, LM-driven general AI agents will serve as essential tools in production tasks, capable of autonomous communication and collaboration without human intervention. This paper investigates scenarios involving the autonomous collaboration of future LM agents. We review the current state of LM agents, the key technologies enabling LM agent collaboration, and the security and privacy challenges they face during cooperative operations. To this end, we first explore the foundational principles of LM agents, including their general architecture, key components, enabling technologies, and modern applications. We then discuss practical collaboration paradigms from data, computation, and knowledge perspectives to achieve connected intelligence among LM agents. After that, we analyze the security vulnerabilities and privacy risks associated with LM agents, particularly in multi-agent settings, examining underlying mechanisms and reviewing current and potential countermeasures. Lastly, we propose future research directions for building robust and secure LM agent ecosystems.
SoK: Dataset Copyright Auditing in Machine Learning Systems
Du, Linkang, Zhou, Xuanru, Chen, Min, Zhang, Chusong, Su, Zhou, Cheng, Peng, Chen, Jiming, Zhang, Zhikun
As the implementation of machine learning (ML) systems becomes more widespread, especially with the introduction of larger ML models, we perceive a spring demand for massive data. However, it inevitably causes infringement and misuse problems with the data, such as using unauthorized online artworks or face images to train ML models. To address this problem, many efforts have been made to audit the copyright of the model training dataset. However, existing solutions vary in auditing assumptions and capabilities, making it difficult to compare their strengths and weaknesses. In addition, robustness evaluations usually consider only part of the ML pipeline and hardly reflect the performance of algorithms in real-world ML applications. Thus, it is essential to take a practical deployment perspective on the current dataset copyright auditing tools, examining their effectiveness and limitations. Concretely, we categorize dataset copyright auditing research into two prominent strands: intrusive methods and non-intrusive methods, depending on whether they require modifications to the original dataset. Then, we break down the intrusive methods into different watermark injection options and examine the non-intrusive methods using various fingerprints. To summarize our results, we offer detailed reference tables, highlight key points, and pinpoint unresolved issues in the current literature. By combining the pipeline in ML systems and analyzing previous studies, we highlight several future directions to make auditing tools more suitable for real-world copyright protection requirements.
Matching-Driven Deep Reinforcement Learning for Energy-Efficient Transmission Parameter Allocation in Multi-Gateway LoRa Networks
Lin, Ziqi, Zhang, Xu, Gong, Shimin, Li, Lanhua, Su, Zhou, Gu, Bo
Long-range (LoRa) communication technology, distinguished by its low power consumption and long communication range, is widely used in the Internet of Things. Nevertheless, the LoRa MAC layer adopts pure ALOHA for medium access control, which may suffer from severe packet collisions as the network scale expands, consequently reducing the system energy efficiency (EE). To address this issue, it is critical to carefully allocate transmission parameters such as the channel (CH), transmission power (TP) and spreading factor (SF) to each end device (ED). Owing to the low duty cycle and sporadic traffic of LoRa networks, evaluating the system EE under various parameter settings proves to be time-consuming. Consequently, we propose an analytical model aimed at calculating the system EE while fully considering the impact of multiple gateways, duty cycling, quasi-orthogonal SFs and capture effects. On this basis, we investigate a joint CH, SF and TP allocation problem, with the objective of optimizing the system EE for uplink transmissions. Due to the NP-hard complexity of the problem, the optimization problem is decomposed into two subproblems: CH assignment and SF/TP assignment. First, a matching-based algorithm is introduced to address the CH assignment subproblem. Then, an attention-based multiagent reinforcement learning technique is employed to address the SF/TP assignment subproblem for EDs allocated to the same CH, which reduces the number of learning agents to achieve fast convergence. The simulation outcomes indicate that the proposed approach converges quickly under various parameter settings and obtains significantly better system EE than baseline algorithms.
Can We Enhance the Quality of Mobile Crowdsensing Data Without Ground Truth?
Li, Jiajie, Gu, Bo, Gong, Shimin, Su, Zhou, Guizani, Mohsen
Mobile crowdsensing (MCS) has emerged as a prominent trend across various domains. However, ensuring the quality of the sensing data submitted by mobile users (MUs) remains a complex and challenging problem. To address this challenge, an advanced method is required to detect low-quality sensing data and identify malicious MUs that may disrupt the normal operations of an MCS system. Therefore, this article proposes a prediction- and reputation-based truth discovery (PRBTD) framework, which can separate low-quality data from high-quality data in sensing tasks. First, we apply a correlation-focused spatial-temporal transformer network to predict the ground truth of the input sensing data. Then, we extract the sensing errors of the data as features based on the prediction results to calculate the implications among the data. Finally, we design a reputation-based truth discovery (TD) module for identifying low-quality data with their implications. Given sensing data submitted by MUs, PRBTD can eliminate the data with heavy noise and identify malicious MUs with high accuracy. Extensive experimental results demonstrate that PRBTD outperforms the existing methods in terms of identification accuracy and data quality enhancement.
Semi-supervised Counting via Pixel-by-pixel Density Distribution Modelling
Lin, Hui, Ma, Zhiheng, Ji, Rongrong, Wang, Yaowei, Su, Zhou, Hong, Xiaopeng, Meng, Deyu
This paper focuses on semi-supervised crowd counting, where only a small portion of the training data are labeled. We formulate the pixel-wise density value to regress as a probability distribution, instead of a single deterministic value. On this basis, we propose a semi-supervised crowd-counting model. Firstly, we design a pixel-wise distribution matching loss to measure the differences in the pixel-wise density distributions between the prediction and the ground truth; Secondly, we enhance the transformer decoder by using density tokens to specialize the forwards of decoders w.r.t. different density intervals; Thirdly, we design the interleaving consistency self-supervised learning mechanism to learn from unlabeled data efficiently. Extensive experiments on four datasets are performed to show that our method clearly outperforms the competitors by a large margin under various labeled ratio settings. Code will be released at https://github.com/LoraLinH/Semi-supervised-Counting-via-Pixel-by-pixel-Density-Distribution-Modelling.
A Survey on ChatGPT: AI-Generated Contents, Challenges, and Solutions
Wang, Yuntao, Pan, Yanghe, Yan, Miao, Su, Zhou, Luan, Tom H.
With the widespread use of large artificial intelligence (AI) models such as ChatGPT, AI-generated content (AIGC) has garnered increasing attention and is leading a paradigm shift in content creation and knowledge representation. AIGC uses generative large AI algorithms to assist or replace humans in creating massive, high-quality, and human-like content at a faster pace and lower cost, based on user-provided prompts. Despite the recent significant progress in AIGC, security, privacy, ethical, and legal challenges still need to be addressed. This paper presents an in-depth survey of working principles, security and privacy threats, state-of-the-art solutions, and future challenges of the AIGC paradigm. Specifically, we first explore the enabling technologies, general architecture of AIGC, and discuss its working modes and key characteristics. Then, we investigate the taxonomy of security and privacy threats to AIGC and highlight the ethical and societal implications of GPT and AIGC technologies. Furthermore, we review the state-of-the-art AIGC watermarking approaches for regulatable AIGC paradigms regarding the AIGC model and its produced content. Finally, we identify future challenges and open research directions related to AIGC.
Towards Practical Multi-Robot Hybrid Tasks Allocation for Autonomous Cleaning
Wang, Yabin, Hong, Xiaopeng, Ma, Zhiheng, Ma, Tiedong, Qin, Baoxing, Su, Zhou
Task allocation plays a vital role in multi-robot autonomous cleaning systems, where multiple robots work together to clean a large area. However, most current studies mainly focus on deterministic, single-task allocation for cleaning robots, without considering hybrid tasks in uncertain working environments. Moreover, there is a lack of datasets and benchmarks for relevant research. In this paper, to address these problems, we formulate multi-robot hybrid-task allocation under the uncertain cleaning environment as a robust optimization problem. Firstly, we propose a novel robust mixed-integer linear programming model with practical constraints including the task order constraint for different tasks and the ability constraints of hybrid robots. Secondly, we establish a dataset of \emph{100} instances made from floor plans, each of which has 2D manually-labeled images and a 3D model. Thirdly, we provide comprehensive results on the collected dataset using three traditional optimization approaches and a deep reinforcement learning-based solver. The evaluation results show that our solution meets the needs of multi-robot cleaning task allocation and the robust solver can protect the system from worst-case scenarios with little additional cost. The benchmark will be available at {https://github.com/iamwangyabin/Multi-robot-Cleaning-Task-Allocation}.
Social-Aware Clustered Federated Learning with Customized Privacy Preservation
Wang, Yuntao, Su, Zhou, Pan, Yanghe, Luan, Tom H, Li, Ruidong, Yu, Shui
A key feature of federated learning (FL) is to preserve the data privacy of end users. However, there still exist potential privacy leakage in exchanging gradients under FL. As a result, recent research often explores the differential privacy (DP) approaches to add noises to the computing results to address privacy concerns with low overheads, which however degrade the model performance. In this paper, we strike the balance of data privacy and efficiency by utilizing the pervasive social connections between users. Specifically, we propose SCFL, a novel Social-aware Clustered Federated Learning scheme, where mutually trusted individuals can freely form a social cluster and aggregate their raw model updates (e.g., gradients) inside each cluster before uploading to the cloud for global aggregation. By mixing model updates in a social group, adversaries can only eavesdrop the social-layer combined results, but not the privacy of individuals. We unfold the design of SCFL in three steps. \emph{i) Stable social cluster formation. Considering users' heterogeneous training samples and data distributions, we formulate the optimal social cluster formation problem as a federation game and devise a fair revenue allocation mechanism to resist free-riders. ii) Differentiated trust-privacy mapping}. For the clusters with low mutual trust, we design a customizable privacy preservation mechanism to adaptively sanitize participants' model updates depending on social trust degrees. iii) Distributed convergence}. A distributed two-sided matching algorithm is devised to attain an optimized disjoint partition with Nash-stable convergence. Experiments on Facebook network and MNIST/CIFAR-10 datasets validate that our SCFL can effectively enhance learning utility, improve user payoff, and enforce customizable privacy protection.