Su, Yuting
Dynamic Causal Disentanglement Model for Dialogue Emotion Detection
Su, Yuting, Wei, Yichen, Nie, Weizhi, Zhao, Sicheng, Liu, Anan
Emotion detection is a critical technology extensively employed in diverse fields. While the incorporation of commonsense knowledge has proven beneficial for existing emotion detection methods, dialogue-based emotion detection encounters numerous difficulties and challenges due to human agency and the variability of dialogue content.In dialogues, human emotions tend to accumulate in bursts. However, they are often implicitly expressed. This implies that many genuine emotions remain concealed within a plethora of unrelated words and dialogues.In this paper, we propose a Dynamic Causal Disentanglement Model based on hidden variable separation, which is founded on the separation of hidden variables. This model effectively decomposes the content of dialogues and investigates the temporal accumulation of emotions, thereby enabling more precise emotion recognition. First, we introduce a novel Causal Directed Acyclic Graph (DAG) to establish the correlation between hidden emotional information and other observed elements. Subsequently, our approach utilizes pre-extracted personal attributes and utterance topics as guiding factors for the distribution of hidden variables, aiming to separate irrelevant ones. Specifically, we propose a dynamic temporal disentanglement model to infer the propagation of utterances and hidden variables, enabling the accumulation of emotion-related information throughout the conversation. To guide this disentanglement process, we leverage the ChatGPT-4.0 and LSTM networks to extract utterance topics and personal attributes as observed information.Finally, we test our approach on two popular datasets in dialogue emotion detection and relevant experimental results verified the model's superiority.
LCC: Learning to Customize and Combine Neural Networks for Few-Shot Learning
Liu, Yaoyao, Sun, Qianru, Liu, An-An, Su, Yuting, Schiele, Bernt, Chua, Tat-Seng
Meta-learning has been shown to be an effective strategy for few-shot learning. The key idea is to leverage a large number of similar few-shot tasks in order to meta-learn how to best initiate a (single) base-learner for novel few-shot tasks. While meta-learning how to initialize a base-learner has shown promising results, it is well known that hyperparameter settings such as the learning rate and the weighting of the regularization term are important to achieve best performance. We thus propose to also meta-learn these hyperparameters and in fact learn a time- and layer-varying scheme for learning a base-learner on novel tasks. Additionally, we propose to learn not only a single base-learner but an ensemble of several base-learners to obtain more robust results. While ensembles of learners have shown to improve performance in various settings, this is challenging for few-shot learning tasks due to the limited number of training samples. Therefore, our approach also aims to meta-learn how to effectively combine several base-learners. We conduct extensive experiments and report top performance for five-class few-shot recognition tasks on two challenging benchmarks: miniImageNet and Fewshot-CIFAR100 (FC100).