Su, Yongbo
Learning Perceptive Humanoid Locomotion over Challenging Terrain
Sun, Wandong, Cao, Baoshi, Chen, Long, Su, Yongbo, Liu, Yang, Xie, Zongwu, Liu, Hong
Humanoid robots are engineered to navigate terrains akin to those encountered by humans, which necessitates human-like locomotion and perceptual abilities. Currently, the most reliable controllers for humanoid motion rely exclusively on proprioception, a reliance that becomes both dangerous and unreliable when coping with rugged terrain. Although the integration of height maps into perception can enable proactive gait planning, robust utilization of this information remains a significant challenge, especially when exteroceptive perception is noisy. To surmount these challenges, we propose a solution based on a teacher-student distillation framework. In this paradigm, an oracle policy accesses noise-free data to establish an optimal reference policy, while the student policy not only imitates the teacher's actions but also simultaneously trains a world model with a variational information bottleneck for sensor denoising and state estimation. Extensive evaluations demonstrate that our approach markedly enhances performance in scenarios characterized by unreliable terrain estimations. Moreover, we conducted rigorous testing in both challenging urban settings and off-road environments, the model successfully traverse 2 km of varied terrain without external intervention.
Learning Humanoid Locomotion with World Model Reconstruction
Sun, Wandong, Chen, Long, Su, Yongbo, Cao, Baoshi, Liu, Yang, Xie, Zongwu
Humanoid robots are designed to navigate environments accessible to humans using their legs. However, classical research has primarily focused on controlled laboratory settings, resulting in a gap in developing controllers for navigating complex real-world terrains. This challenge mainly arises from the limitations and noise in sensor data, which hinder the robot's understanding of itself and the environment. In this study, we introduce World Model Reconstruction (WMR), an end-to-end learning-based approach for blind humanoid locomotion across challenging terrains. We propose training an estimator to explicitly reconstruct the world state and utilize it to enhance the locomotion policy. The locomotion policy takes inputs entirely from the reconstructed information. The policy and the estimator are trained jointly; however, the gradient between them is intentionally cut off. This ensures that the estimator focuses solely on world reconstruction, independent of the locomotion policy's updates. We evaluated our model on rough, deformable, and slippery surfaces in real-world scenarios, demonstrating robust adaptability and resistance to interference. The robot successfully completed a 3.2 km hike without any human assistance, mastering terrains covered with ice and snow.