Goto

Collaborating Authors

 Su, Yixin


Intrinsic and Extrinsic Factor Disentanglement for Recommendation in Various Context Scenarios

arXiv.org Artificial Intelligence

In recommender systems, the patterns of user behaviors (e.g., purchase, click) may vary greatly in different contexts (e.g., time and location). This is because user behavior is jointly determined by two types of factors: intrinsic factors, which reflect consistent user preference, and extrinsic factors, which reflect external incentives that may vary in different contexts. Differentiating between intrinsic and extrinsic factors helps learn user behaviors better. However, existing studies have only considered differentiating them from a single, pre-defined context (e.g., time or location), ignoring the fact that a user's extrinsic factors may be influenced by the interplay of various contexts at the same time. In this paper, we propose the Intrinsic-Extrinsic Disentangled Recommendation (IEDR) model, a generic framework that differentiates intrinsic from extrinsic factors considering various contexts simultaneously, enabling more accurate differentiation of factors and hence the improvement of recommendation accuracy. IEDR contains a context-invariant contrastive learning component to capture intrinsic factors, and a disentanglement component to extract extrinsic factors under the interplay of various contexts. The two components work together to achieve effective factor learning. Extensive experiments on real-world datasets demonstrate IEDR's effectiveness in learning disentangled factors and significantly improving recommendation accuracy by up to 4% in NDCG.


AutoAlign: Fully Automatic and Effective Knowledge Graph Alignment enabled by Large Language Models

arXiv.org Artificial Intelligence

The task of entity alignment between knowledge graphs (KGs) aims to identify every pair of entities from two different KGs that represent the same entity. Many machine learning-based methods have been proposed for this task. However, to our best knowledge, existing methods all require manually crafted seed alignments, which are expensive to obtain. In this paper, we propose the first fully automatic alignment method named AutoAlign, which does not require any manually crafted seed alignments. Specifically, for predicate embeddings, AutoAlign constructs a predicate-proximity-graph with the help of large language models to automatically capture the similarity between predicates across two KGs. For entity embeddings, AutoAlign first computes the entity embeddings of each KG independently using TransE, and then shifts the two KGs' entity embeddings into the same vector space by computing the similarity between entities based on their attributes. Thus, both predicate alignment and entity alignment can be done without manually crafted seed alignments. AutoAlign is not only fully automatic, but also highly effective. Experiments using real-world KGs show that AutoAlign improves the performance of entity alignment significantly compared to state-of-the-art methods.


Neural Graph Matching based Collaborative Filtering

arXiv.org Artificial Intelligence

User and item attributes are essential side-information; their interactions (i.e., their co-occurrence in the sample data) can significantly enhance prediction accuracy in various recommender systems. We identify two different types of attribute interactions, inner interactions and cross interactions: inner interactions are those between only user attributes or those between only item attributes; cross interactions are those between user attributes and item attributes. Existing models do not distinguish these two types of attribute interactions, which may not be the most effective way to exploit the information carried by the interactions. To address this drawback, we propose a neural Graph Matching based Collaborative Filtering model (GMCF), which effectively captures the two types of attribute interactions through modeling and aggregating attribute interactions in a graph matching structure for recommendation. In our model, the two essential recommendation procedures, characteristic learning and preference matching, are explicitly conducted through graph learning (based on inner interactions) and node matching (based on cross interactions), respectively. Experimental results show that our model outperforms state-of-the-art models. Further studies verify the effectiveness of GMCF in improving the accuracy of recommendation.


Detecting Beneficial Feature Interactions for Recommender Systems via Graph Neural Networks

arXiv.org Machine Learning

Feature interactions are essential for achieving high accuracy in recommender systems. Many studies take into account the interaction between every pair of features. However, this is suboptimal because some feature interactions may not be that relevant to the recommendation result and taking them into account may introduce noise and decrease recommendation accuracy. To make the best out of feature interactions, we propose a graph neural network approach to effectively model them, together with a novel technique to automatically detect those feature interactions that are beneficial in terms of recommendation accuracy. The automatic feature interaction detection is achieved via edge prediction with an L0 activation regularization. Our proposed model is proved to be effective through the information bottleneck principle and statistical interaction theory. Experimental results show that our model (i) outperforms existing baselines in terms of accuracy, and (ii) automatically identifies beneficial feature interactions.


MMF: Attribute Interpretable Collaborative Filtering

arXiv.org Artificial Intelligence

--Collaborative filtering is one of the most popular techniques in designing recommendation systems, and its most representative model, matrix factorization, has been wildly used by researchers and the industry. However, this model suffers from the lack of interpretability and the item cold-start problem, which limit its reliability and practicability. In this paper, we propose an interpretable recommendation model called Multi-Matrix F actorization (MMF), which addresses these two limitations and achieves the state-of-the-art prediction accuracy by exploiting common attributes that are present in different items. In the model, predicted item ratings are regarded as weighted aggregations of attribute ratings generated by the inner product of the user latent vectors and the attribute latent vectors. MMF provides more fine grained analyses than matrix factorization in the following ways: attribute ratings with weights allow the understanding of how much each attribute contributes to the recommendation and hence provide interpretability; the common attributes can act as a link between existing and new items, which solves the item cold-start problem when no rating exists on an item. We evaluate the interpretability of MMF comprehensively, and conduct extensive experiments on real datasets to show that MMF outperforms state-of-the-art baselines in terms of accuracy. I NTRODUCTION In recent years, recommendation systems gain increasing interest by both researchers and the industry [1], [2]. The most popular recommendation systems are based on collaborative filtering (CF) technique, which provides recommendations based on other similar users' choice [3]. Matrix factorization (MF) is one of the most common collaborative filtering models, whose main idea is to learn user latent vectors and item latent vectors, so that the inner product of the two vectors can approximate the original matrix with the minimal approximation error. MF has advantages of simplicity and performing well in many domains, such as recommendation systems, computer vision and document clustering [4]-[7].