Goto

Collaborating Authors

 Su, Weijie J.


Statistical Impossibility and Possibility of Aligning LLMs with Human Preferences: From Condorcet Paradox to Nash Equilibrium

arXiv.org Machine Learning

Aligning large language models (LLMs) with diverse human preferences is critical for ensuring fairness and informed outcomes when deploying these models for decision-making. In this paper, we seek to uncover fundamental statistical limits concerning aligning LLMs with human preferences, with a focus on the probabilistic representation of human preferences and the preservation of diverse preferences in aligned LLMs. We first show that human preferences can be represented by a reward model if and only if the preference among LLM-generated responses is free of any Condorcet cycle. Moreover, we prove that Condorcet cycles exist with probability converging to one exponentially fast under a probabilistic preference model, thereby demonstrating the impossibility of fully aligning human preferences using reward-based approaches such as reinforcement learning from human feedback. Next, we explore the conditions under which LLMs would employ mixed strategies -- meaning they do not collapse to a single response -- when aligned in the limit using a non-reward-based approach, such as Nash learning from human feedback (NLHF). We identify a necessary and sufficient condition for mixed strategies: the absence of a response that is preferred over all others by a majority. As a blessing, we prove that this condition holds with high probability under the probabilistic preference model, thereby highlighting the statistical possibility of preserving minority preferences without explicit regularization in aligning LLMs. Finally, we leverage insights from our statistical results to design a novel, computationally efficient algorithm for finding Nash equilibria in aligning LLMs with NLHF. Our experiments show that Llama-3.2-1B, aligned with our algorithm, achieves a win rate of 60.55\% against the base model.


An Overview of Large Language Models for Statisticians

arXiv.org Machine Learning

Large Language Models (LLMs) have emerged as transformative tools in artificial intelligence (AI), exhibiting remarkable capabilities across diverse tasks such as text generation, reasoning, and decision-making. While their success has primarily been driven by advances in computational power and deep learning architectures, emerging problems -- in areas such as uncertainty quantification, decision-making, causal inference, and distribution shift -- require a deeper engagement with the field of statistics. This paper explores potential areas where statisticians can make important contributions to the development of LLMs, particularly those that aim to engender trustworthiness and transparency for human users. Thus, we focus on issues such as uncertainty quantification, interpretability, fairness, privacy, watermarking and model adaptation. We also consider possible roles for LLMs in statistical analysis. By bridging AI and statistics, we aim to foster a deeper collaboration that advances both the theoretical foundations and practical applications of LLMs, ultimately shaping their role in addressing complex societal challenges.


Magnetic Preference Optimization: Achieving Last-iterate Convergence for Language Model Alignment

arXiv.org Artificial Intelligence

Self-play methods have demonstrated remarkable success in enhancing model capabilities across various domains. In the context of Reinforcement Learning from Human Feedback (RLHF), self-play not only boosts Large Language Model (LLM) performance but also overcomes the limitations of traditional Bradley-Terry (BT) model assumptions by finding the Nash equilibrium (NE) of a preference-based, two-player constant-sum game. However, existing methods either guarantee only average-iterate convergence, incurring high storage and inference costs, or converge to the NE of a regularized game, failing to accurately reflect true human preferences. In this paper, we introduce Magnetic Preference Optimization (MPO), a novel approach capable of achieving last-iterate convergence to the NE of the original game, effectively overcoming the limitations of existing methods. Building upon Magnetic Mirror Descent (MMD), MPO attains a linear convergence rate, making it particularly suitable for fine-tuning LLMs. To ensure our algorithm is both theoretically sound and practically viable, we present a simple yet effective implementation that adapts the theoretical insights to the RLHF setting. Empirical results demonstrate that MPO can significantly enhance the performance of LLMs, highlighting the potential of self-play methods in alignment.


Robust Detection of Watermarks for Large Language Models Under Human Edits

arXiv.org Machine Learning

Watermarking has offered an effective approach to distinguishing text generated by large language models (LLMs) from human-written text. However, the pervasive presence of human edits on LLM-generated text dilutes watermark signals, thereby significantly degrading detection performance of existing methods. In this paper, by modeling human edits through mixture model detection, we introduce a new method in the form of a truncated goodness-of-fit test for detecting watermarked text under human edits, which we refer to as Tr-GoF. We prove that the Tr-GoF test achieves optimality in robust detection of the Gumbel-max watermark in a certain asymptotic regime of substantial text modifications and vanishing watermark signals. Importantly, Tr-GoF achieves this optimality \textit{adaptively} as it does not require precise knowledge of human edit levels or probabilistic specifications of the LLMs, in contrast to the optimal but impractical (Neyman--Pearson) likelihood ratio test. Moreover, we establish that the Tr-GoF test attains the highest detection efficiency rate in a certain regime of moderate text modifications. In stark contrast, we show that sum-based detection rules, as employed by existing methods, fail to achieve optimal robustness in both regimes because the additive nature of their statistics is less resilient to edit-induced noise. Finally, we demonstrate the competitive and sometimes superior empirical performance of the Tr-GoF test on both synthetic data and open-source LLMs in the OPT and LLaMA families.


Debiasing Watermarks for Large Language Models via Maximal Coupling

arXiv.org Machine Learning

Watermarking language models is essential for distinguishing between human and machine-generated text and thus maintaining the integrity and trustworthiness of digital communication. We present a novel green/red list watermarking approach that partitions the token set into ``green'' and ``red'' lists, subtly increasing the generation probability for green tokens. To correct token distribution bias, our method employs maximal coupling, using a uniform coin flip to decide whether to apply bias correction, with the result embedded as a pseudorandom watermark signal. Theoretical analysis confirms this approach's unbiased nature and robust detection capabilities. Experimental results show that it outperforms prior techniques by preserving text quality while maintaining high detectability, and it demonstrates resilience to targeted modifications aimed at improving text quality. This research provides a promising watermarking solution for language models, balancing effective detection with minimal impact on text quality.


The 2020 United States Decennial Census Is More Private Than You (Might) Think

arXiv.org Machine Learning

The U.S. Decennial Census serves as the foundation for many high-profile policy decision-making processes, including federal funding allocation and redistricting. In 2020, the Census Bureau adopted differential privacy to protect the confidentiality of individual responses through a disclosure avoidance system that injects noise into census data tabulations. The Bureau subsequently posed an open question: Could sharper privacy guarantees be obtained for the 2020 U.S. Census compared to their published guarantees, or equivalently, had the nominal privacy budgets been fully utilized? In this paper, we affirmatively address this open problem by demonstrating that between 8.50% and 13.76% of the privacy budget for the 2020 U.S. Census remains unused for each of the eight geographical levels, from the national level down to the block level. This finding is made possible through our precise tracking of privacy losses using $f$-differential privacy, applied to the composition of private queries across various geographical levels. Our analysis indicates that the Census Bureau introduced unnecessarily high levels of injected noise to achieve the claimed privacy guarantee for the 2020 U.S. Census. Consequently, our results enable the Bureau to reduce noise variances by 15.08% to 24.82% while maintaining the same privacy budget for each geographical level, thereby enhancing the accuracy of privatized census statistics. We empirically demonstrate that reducing noise injection into census statistics mitigates distortion caused by privacy constraints in downstream applications of private census data, illustrated through a study examining the relationship between earnings and education.


Multi-Modal and Multi-Agent Systems Meet Rationality: A Survey

arXiv.org Artificial Intelligence

Rationality is the quality of being guided by reason, characterized by logical thinking and decision-making that align with evidence and logical rules. This quality is essential for effective problem-solving, as it ensures that solutions are well-founded and systematically derived. Despite the advancements of large language models (LLMs) in generating human-like text with remarkable accuracy, they present biases inherited from the training data, inconsistency across different contexts, and difficulty understanding complex scenarios involving multiple layers of context. Therefore, recent research attempts to leverage the strength of multiple agents working collaboratively with various types of data and tools for enhanced consistency and reliability. To that end, this paper aims to understand whether multi-modal and multi-agent systems are advancing toward rationality by surveying the state-of-the-art works, identifying advancements over single-agent and single-modal systems in terms of rationality, and discussing open problems and future directions. We maintain an open repository at https://github.com/bowen-upenn/MMMA_Rationality.


A Peek into Token Bias: Large Language Models Are Not Yet Genuine Reasoners

arXiv.org Artificial Intelligence

This study introduces a hypothesis-testing framework to assess whether large language models (LLMs) possess genuine reasoning abilities or primarily depend on token bias. We go beyond evaluating LLMs on accuracy; rather, we aim to investigate their token bias in solving logical reasoning tasks. Specifically, we develop carefully controlled synthetic datasets, featuring conjunction fallacy and syllogistic problems. Our framework outlines a list of hypotheses where token biases are readily identifiable, with all null hypotheses assuming genuine reasoning capabilities of LLMs. The findings in this study suggest, with statistical guarantee, that most LLMs still struggle with logical reasoning. While they may perform well on classic problems, their success largely depends on recognizing superficial patterns with strong token bias, thereby raising concerns about their actual reasoning and generalization abilities.


Bridging the Gap: Rademacher Complexity in Robust and Standard Generalization

arXiv.org Machine Learning

Training Deep Neural Networks (DNNs) with adversarial examples often results in poor generalization to test-time adversarial data. This paper investigates this issue, known as adversarially robust generalization, through the lens of Rademacher complexity. Building upon the studies by Khim and Loh (2018); Yin et al. (2019), numerous works have been dedicated to this problem, yet achieving a satisfactory bound remains an elusive goal. Existing works on DNNs either apply to a surrogate loss instead of the robust loss or yield bounds that are notably looser compared to their standard counterparts. In the latter case, the bounds have a higher dependency on the width $m$ of the DNNs or the dimension $d$ of the data, with an extra factor of at least $\mathcal{O}(\sqrt{m})$ or $\mathcal{O}(\sqrt{d})$. This paper presents upper bounds for adversarial Rademacher complexity of DNNs that match the best-known upper bounds in standard settings, as established in the work of Bartlett et al. (2017), with the dependency on width and dimension being $\mathcal{O}(\ln(dm))$. The central challenge addressed is calculating the covering number of adversarial function classes. We aim to construct a new cover that possesses two properties: 1) compatibility with adversarial examples, and 2) precision comparable to covers used in standard settings. To this end, we introduce a new variant of covering number called the \emph{uniform covering number}, specifically designed and proven to reconcile these two properties. Consequently, our method effectively bridges the gap between Rademacher complexity in robust and standard generalization.


Tackling GenAI Copyright Issues: Originality Estimation and Genericization

arXiv.org Machine Learning

To achieve this, we introduce a metric for quantifying the level of originality of data in a manner that is consistent with the legal framework. This metric can be practically estimated by drawing samples from a generative model, which is then used for the genericization process.