Goto

Collaborating Authors

 Su, Houcheng


GraphCL: Graph-based Clustering for Semi-Supervised Medical Image Segmentation

arXiv.org Artificial Intelligence

Semi-supervised learning (SSL) has made notable advancements in medical image segmentation (MIS), particularly in scenarios with limited labeled data and significantly enhancing data utilization efficiency. Previous methods primarily focus on complex training strategies to utilize unlabeled data but neglect the importance of graph structural information. Different from existing methods, we propose a graph-based clustering for semi-supervised medical image segmentation (GraphCL) by jointly modeling graph data structure in a unified deep model. The proposed GraphCL model enjoys several advantages. Firstly, to the best of our knowledge, this is the first work to model the data structure information for semi-supervised medical image segmentation (SSMIS). Secondly, to get the clustered features across different graphs, we integrate both pairwise affinities between local image features and raw features as inputs. Extensive experimental results on three standard benchmarks show that the proposed GraphCL algorithm outperforms state-of-the-art semi-supervised medical image segmentation methods.


AGLP: A Graph Learning Perspective for Semi-supervised Domain Adaptation

arXiv.org Artificial Intelligence

In semi-supervised domain adaptation (SSDA), the model aims to leverage partially labeled target domain data along with a large amount of labeled source domain data to enhance its generalization capability for the target domain. A key advantage of SSDA is its ability to significantly reduce reliance on labeled data, thereby lowering the costs and time associated with data preparation. Most existing SSDA methods utilize information from domain labels and class labels but overlook the structural information of the data. To address this issue, this paper proposes a graph learning perspective (AGLP) for semi-supervised domain adaptation. We apply the graph convolutional network to the instance graph which allows structural information to propagate along the weighted graph edges. The proposed AGLP model has several advantages. First, to the best of our knowledge, this is the first work to model structural information in SSDA. Second, the proposed model can effectively learn domain-invariant and semantic representations, reducing domain discrepancies in SSDA. Extensive experimental results on multiple standard benchmarks demonstrate that the proposed AGLP algorithm outperforms state-of-the-art semi-supervised domain adaptation methods.


DiM: $f$-Divergence Minimization Guided Sharpness-Aware Optimization for Semi-supervised Medical Image Segmentation

arXiv.org Artificial Intelligence

As a technique to alleviate the pressure of data annotation, semi-supervised learning (SSL) has attracted widespread attention. In the specific domain of medical image segmentation, semi-supervised methods (SSMIS) have become a research hotspot due to their ability to reduce the need for large amounts of precisely annotated data. SSMIS focuses on enhancing the model's generalization performance by leveraging a small number of labeled samples and a large number of unlabeled samples. The latest sharpness-aware optimization (SAM) technique, which optimizes the model by reducing the sharpness of the loss function, has shown significant success in SSMIS. However, SAM and its variants may not fully account for the distribution differences between different datasets. To address this issue, we propose a sharpness-aware optimization method based on $f$-divergence minimization (DiM) for semi-supervised medical image segmentation. This method enhances the model's stability by fine-tuning the sensitivity of model parameters and improves the model's adaptability to different datasets through the introduction of $f$-divergence. By reducing $f$-divergence, the DiM method not only improves the performance balance between the source and target datasets but also prevents performance degradation due to overfitting on the source dataset.


Singular Value Penalization and Semantic Data Augmentation for Fully Test-Time Adaptation

arXiv.org Artificial Intelligence

Fully test-time adaptation (FTTA) adapts a model that is trained on a source domain to a target domain during the testing phase, where the two domains follow different distributions and source data is unavailable during the training phase. Existing methods usually adopt entropy minimization to reduce the uncertainty of target prediction results, and improve the FTTA performance accordingly. However, they fail to ensure the diversity in target prediction results. Recent domain adaptation study has shown that maximizing the sum of singular values of prediction results can simultaneously enhance their confidence (discriminability) and diversity. However, during the training phase, larger singular values usually take up a dominant position in loss maximization. This results in the model being more inclined to enhance discriminability for easily distinguishable classes, and the improvement in diversity is insufficiently effective. Furthermore, the adaptation and prediction in FTTA only use data from the current batch, which may lead to the risk of overfitting. To address the aforementioned issues, we propose maximizing the sum of singular values while minimizing their variance. This enables the model's focus toward the smaller singular values, enhancing discriminability between more challenging classes and effectively increasing the diversity of prediction results. Moreover, we incorporate data from the previous batch to realize semantic data augmentation for the current batch, reducing the risk of overfitting. Extensive experiments on benchmark datasets show our proposed approach outperforms some compared state-of-the-art FTTA methods.


Graph based Label Enhancement for Multi-instance Multi-label learning

arXiv.org Artificial Intelligence

Multi-instance multi-label (MIML) learning is widely applicated in numerous domains, such as the image classification where one image contains multiple instances correlated with multiple logic labels simultaneously. The related labels in existing MIML are all assumed as logical labels with equal significance. However, in practical applications in MIML, significance of each label for multiple instances per bag (such as an image) is significant different. Ignoring labeling significance will greatly lose the semantic information of the object, so that MIML is not applicable in complex scenes with a poor learning performance. To this end, this paper proposed a novel MIML framework based on graph label enhancement, namely GLEMIML, to improve the classification performance of MIML by leveraging label significance. GLEMIML first recognizes the correlations among instances by establishing the graph and then migrates the implicit information mined from the feature space to the label space via nonlinear mapping, thus recovering the label significance. Finally, GLEMIML is trained on the enhanced data through matching and interaction mechanisms. GLEMIML (AvgRank: 1.44) can effectively improve the performance of MIML by mining the label distribution mechanism and show better results than the SOTA method (AvgRank: 2.92) on multiple benchmark datasets.