Goto

Collaborating Authors

 Sturtevant, Nathan R.


Parallelizing Multi-objective A* Search

arXiv.org Artificial Intelligence

The Multi-objective Shortest Path (MOSP) problem is a classic network optimization problem that aims to find all Pareto-optimal paths between two points in a graph with multiple edge costs. Recent studies on multi-objective search with A* (MOA*) have demonstrated superior performance in solving difficult MOSP instances. This paper presents a novel search framework that allows efficient parallelization of MOA* with different objective orders. The framework incorporates a unique upper bounding strategy that helps the search reduce the problem's dimensionality to one in certain cases. Experimental results demonstrate that the proposed framework can enhance the performance of recent A*-based solutions, with the speed-up proportional to the problem dimension.


On Parallel External-Memory Bidirectional Search

arXiv.org Artificial Intelligence

Parallelization and External Memory (PEM) techniques have significantly enhanced the capabilities of search algorithms when solving large-scale problems. Previous research on PEM has primarily centered on unidirectional algorithms, with only one publication on bidirectional PEM that focuses on the meet-in-the-middle (MM) algorithm. Building upon this foundation, this paper presents a framework that integrates both uni- and bi-directional best-first search algorithms into this framework. We then develop a PEM variant of the state-of-the-art bidirectional heuristic search (BiHS) algorithm BAE* (PEM-BAE*). As previous work on BiHS did not focus on scaling problem sizes, this work enables us to evaluate bidirectional algorithms on hard problems. Empirical evaluation shows that PEM-BAE* outperforms the PEM variants of A* and the MM algorithm, as well as a parallel variant of IDA*. These findings mark a significant milestone, revealing that bidirectional search algorithms clearly outperform unidirectional search algorithms across several domains, even when equipped with state-of-the-art heuristics.


Set-Based Retrograde Analysis: Precomputing the Solution to 24-card Bridge Double Dummy Deals

arXiv.org Artificial Intelligence

Retrograde analysis is used in game-playing programs to solve states at the end of a game, working backwards toward the start of the game. The algorithm iterates through and computes the perfect-play value for as many states as resources allow. We introduce setrograde analysis which achieves the same results by operating on sets of states that have the same game value. The algorithm is demonstrated by computing exact solutions for Bridge double dummy card-play. For deals with 24 cards remaining to be played ( 10 27 states, which can be reduced to 10 15 states using preexisting techniques), we strongly solve all deals. The setrograde algorithm performs a factor of 10 3 fewer search operations than a standard retrograde algorithm, producing a database with a factor of 10 4 fewer entries. For applicable domains, this allows retrograde searching to reach unprecedented search depths. 1 Introduction Some of the early high-performance game-playing programs relied on retrograde analysis and endgame databases for strong play. The most notable example is Checkers, where 39 trillion endgame positions, all those with 10 or fewer pieces, were used as part of the C HINOOK program (Scha-effer et al. 1992), and for solving Checkers (Schaeffer et al. 2007). Endgame databases are also used widely in Chess programs (Chess 2024), as well as in many other games (e.g., for solving A wari (Romein and Bal 2003)). Endgame databases are most effective in games where there are far fewer positions at the end of the game than elsewhere. As a result, they have not been applied in games that do not have this property. For instance, Sturtevant (2003) noted that in 3-player Chinese Checkers a winning arrangement of a single player's pieces in the game has approximately 10 23 possible permutations of the other player's pieces, making it infeasible to store all the variations of even a single winning configuration. While in Chinese Checkers each player has a unique endgame configuration (the other side's piece locations are irrelevant), in Go the locations of both side's pieces in a terminal state are important. Hence these games require significantly different analysis (Berlekamp and Wolfe 1994). In a 4-player trick-based card game such as Bridge, the last two tricks have null 52 2 nullnull 50 2 nullnull 48 2 nullnull 46 2 null = 1 . However, there are only 16 ways for each deal to play out, meaning it is trivial to solve but storing all states (as done in Checkers) is difficult.


Transformer Based Planning in the Observation Space with Applications to Trick Taking Card Games

arXiv.org Artificial Intelligence

Traditional search algorithms have issues when applied to games of imperfect information where the number of possible underlying states and trajectories are very large. This challenge is particularly evident in trick-taking card games. While state sampling techniques such as Perfect Information Monte Carlo (PIMC) search has shown success in these contexts, they still have major limitations. We present Generative Observation Monte Carlo Tree Search (GO-MCTS), which utilizes MCTS on observation sequences generated by a game specific model. This method performs the search within the observation space and advances the search using a model that depends solely on the agent's observations. Additionally, we demonstrate that transformers are well-suited as the generative model in this context, and we demonstrate a process for iteratively training the transformer via population-based self-play. The efficacy of GO-MCTS is demonstrated in various games of imperfect information, such as Hearts, Skat, and "The Crew: The Quest for Planet Nine," with promising results.


Clique Analysis and Bypassing in Continuous-Time Conflict-Based Search

arXiv.org Artificial Intelligence

While the study of unit-cost Multi-Agent Pathfinding (MAPF) problems has been popular, many real-world problems require continuous time and costs due to various movement models. In this context, this paper studies symmetry-breaking enhancements for Continuous-Time Conflict-Based Search (CCBS), a solver for continuous-time MAPF. Resolving conflict symmetries in MAPF can require an exponential amount of work. We adapt known enhancements from unit-cost domains for CCBS: bypassing, which resolves cost symmetries and biclique constraints which resolve spatial conflict symmetries. We formulate a novel combination of biclique constraints with disjoint splitting for spatial conflict symmetries. Finally, we show empirically that these enhancements yield a statistically significant performance improvement versus previous state of the art, solving problems for up to 10% or 20% more agents in the same amount of time on dense graphs.


History Filtering in Imperfect Information Games: Algorithms and Complexity

arXiv.org Artificial Intelligence

Historically applied exclusively to perfect information games, depth-limited search with value functions has been key to recent advances in AI for imperfect information games. Most prominent approaches with strong theoretical guarantees require subgame decomposition - a process in which a subgame is computed from public information and player beliefs. However, subgame decomposition can itself require non-trivial computations, and its tractability depends on the existence of efficient algorithms for either full enumeration or generation of the histories that form the root of the subgame. Despite this, no formal analysis of the tractability of such computations has been established in prior work, and application domains have often consisted of games, such as poker, for which enumeration is trivial on modern hardware. Applying these ideas to more complex domains requires understanding their cost. In this work, we introduce and analyze the computational aspects and tractability of filtering histories for subgame decomposition. We show that constructing a single history from the root of the subgame is generally intractable, and then provide a necessary and sufficient condition for efficient enumeration. We also introduce a novel Markov Chain Monte Carlo-based generation algorithm for trick-taking card games - a domain where enumeration is often prohibitively expensive. Our experiments demonstrate its improved scalability in the trick-taking card game Oh Hell. These contributions clarify when and how depth-limited search via subgame decomposition can be an effective tool for sequential decision-making in imperfect information settings.


Iterative Budgeted Exponential Search

arXiv.org Artificial Intelligence

We tackle two long-standing problems related to re-expansions in heuristic search algorithms. For graph search, A* can require $\Omega(2^{n})$ expansions, where $n$ is the number of states within the final $f$ bound. Existing algorithms that address this problem like B and B' improve this bound to $\Omega(n^2)$. For tree search, IDA* can also require $\Omega(n^2)$ expansions. We describe a new algorithmic framework that iteratively controls an expansion budget and solution cost limit, giving rise to new graph and tree search algorithms for which the number of expansions is $O(n \log C)$, where $C$ is the optimal solution cost. Our experiments show that the new algorithms are robust in scenarios where existing algorithms fail. In the case of tree search, our new algorithms have no overhead over IDA* in scenarios to which IDA* is well suited and can therefore be recommended as a general replacement for IDA*.


Policy Based Inference in Trick-Taking Card Games

arXiv.org Artificial Intelligence

Trick-taking card games feature a large amount of private information that slowly gets revealed through a long sequence of actions. This makes the number of histories exponentially large in the action sequence length, as well as creating extremely large information sets. As a result, these games become too large to solve. To deal with these issues many algorithms employ inference, the estimation of the probability of states within an information set. In this paper, we demonstrate a Policy Based Inference (PI) algorithm that uses player modelling to infer the probability we are in a given state. We perform experiments in the German trick-taking card game Skat, in which we show that this method vastly improves the inference as compared to previous work, and increases the performance of the state-of-the-art Skat AI system Kermit when it is employed into its determinized search algorithm.


Exhaustive and Semi-Exhaustive Procedural Content Generation

AAAI Conferences

Within the area of procedural content generation (PCG) there are a wide range of techniques that have been used to generate content. Many of these techniques use traditional artificial intelligence approaches, such as genetic algorithms, planning, and answer-set programming. One area that has not been widely explored is straightforward combinatorial search -- exhaustive enumeration of the entire design space or a significant subset thereof. This paper synthesizes literature from mathematics and other subfields of Artificial Intelligence to provide reference for the algorithms needed when approaching exhaustive procedural content generation. It builds on this with algorithms for exhaustive search and complete examples how they can be applied in practice.


A Brief History and Recent Achievements in Bidirectional Search

AAAI Conferences

The state of the art in bidirectional search has changed significantly a very short time period; we now can answer questions about unidirectional and bidirectional search that until very recently we were unable to answer. This paper is designed to provide an accessible overview of the recent research in bidirectional search in the context of the broader efforts over the last 50 years. We give particular attention to new theoretical results and the algorithms they inspire for optimal and near-optimal node expansions when finding a shortest path.