Plotting

 Struppek, Lukas


Balancing Transparency and Risk: The Security and Privacy Risks of Open-Source Machine Learning Models

arXiv.org Artificial Intelligence

The field of artificial intelligence (AI) has experienced remarkable progress in recent years, driven by the widespread adoption of open-source machine learning models in both research and industry. Considering the resource-intensive nature of training on vast datasets, many applications opt for models that have already been trained. Hence, a small number of key players undertake the responsibility of training and publicly releasing large pre-trained models, providing a crucial foundation for a wide range of applications. However, the adoption of these open-source models carries inherent privacy and security risks that are often overlooked. To provide a concrete example, an inconspicuous model may conceal hidden functionalities that, when triggered by specific input patterns, can manipulate the behavior of the system, such as instructing self-driving cars to ignore the presence of other vehicles. The implications of successful privacy and security attacks encompass a broad spectrum, ranging from relatively minor damage like service interruptions to highly alarming scenarios, including physical harm or the exposure of sensitive user data. In this work, we present a comprehensive overview of common privacy and security threats associated with the use of open-source models. By raising awareness of these dangers, we strive to promote the responsible and secure use of AI systems.


Rickrolling the Artist: Injecting Backdoors into Text Encoders for Text-to-Image Synthesis

arXiv.org Artificial Intelligence

While text-to-image synthesis currently enjoys great popularity among researchers and the general public, the security of these models has been neglected so far. Many text-guided image generation models rely on pre-trained text encoders from external sources, and their users trust that the retrieved models will behave as promised. Unfortunately, this might not be the case. We introduce backdoor attacks against text-guided generative models and demonstrate that their text encoders pose a major tampering risk. Our attacks only slightly alter an encoder so that no suspicious model behavior is apparent for image generations with clean prompts. By then inserting a single character trigger into the prompt, e.g., a non-Latin character or emoji, the adversary can trigger the model to either generate images with pre-defined attributes or images following a hidden, potentially malicious description. We empirically demonstrate the high effectiveness of our attacks on Stable Diffusion and highlight that the injection process of a single backdoor takes less than two minutes. Besides phrasing our approach solely as an attack, it can also force an encoder to forget phrases related to certain concepts, such as nudity or violence, and help to make image generation safer.


Fair Diffusion: Instructing Text-to-Image Generation Models on Fairness

arXiv.org Artificial Intelligence

Generative AI models have recently achieved astonishing results in quality and are consequently employed in a fast-growing number of applications. However, since they are highly data-driven, relying on billion-sized datasets randomly scraped from the internet, they also suffer from degenerated and biased human behavior, as we demonstrate. In fact, they may even reinforce such biases. To not only uncover but also combat these undesired effects, we present a novel strategy, called Fair Diffusion, to attenuate biases after the deployment of generative text-to-image models. Specifically, we demonstrate shifting a bias, based on human instructions, in any direction yielding arbitrary proportions for, e.g., identity groups. As our empirical evaluation demonstrates, this introduced control enables instructing generative image models on fairness, requiring no data filtering nor additional training. Artificial intelligence (AI) has become an integral part of our lives.


Class Attribute Inference Attacks: Inferring Sensitive Class Information by Diffusion-Based Attribute Manipulations

arXiv.org Artificial Intelligence

Neural network-based image classifiers are powerful tools for computer vision tasks, but they inadvertently reveal sensitive attribute information about their classes, raising concerns about their privacy. To investigate this privacy leakage, we introduce the first Class Attribute Inference Attack (CAIA), which leverages recent advances in text-to-image synthesis to infer sensitive attributes of individual classes in a black-box setting, while remaining competitive with related white-box attacks. Our extensive experiments in the face recognition domain show that CAIA can accurately infer undisclosed sensitive attributes, such as an individual's hair color, gender, and racial appearance, which are not part of the training labels. Interestingly, we demonstrate that adversarial robust models are even more vulnerable to such privacy leakage than standard models, indicating that a trade-off between robustness and privacy exists.


Does CLIP Know My Face?

arXiv.org Artificial Intelligence

With the rise of deep learning in various applications, privacy concerns around the protection of training data has become a critical area of research. Whereas prior studies have focused on privacy risks in single-modal models, we introduce a novel method to assess privacy for multi-modal models, specifically vision-language models like CLIP. The proposed Identity Inference Attack (IDIA) reveals whether an individual was included in the training data by querying the model with images of the same person. Letting the model choose from a wide variety of possible text labels, the model reveals whether it recognizes the person and, therefore, was used for training. Our large-scale experiments on CLIP demonstrate that individuals used for training can be identified with very high accuracy. We confirm that the model has learned to associate names with depicted individuals, implying the existence of sensitive information that can be extracted by adversaries. Our results highlight the need for stronger privacy protection in large-scale models and suggest that IDIAs can be used to prove the unauthorized use of data for training and to enforce privacy laws.


Sparsely-gated Mixture-of-Expert Layers for CNN Interpretability

arXiv.org Artificial Intelligence

Sparsely-gated Mixture of Expert (MoE) layers have been recently successfully applied for scaling large transformers, especially for language modeling tasks. An intriguing side effect of sparse MoE layers is that they convey inherent interpretability to a model via natural expert specialization. In this work, we apply sparse MoE layers to CNNs for computer vision tasks and analyze the resulting effect on model interpretability. To stabilize MoE training, we present both soft and hard constraint-based approaches. With hard constraints, the weights of certain experts are allowed to become zero, while soft constraints balance the contribution of experts with an additional auxiliary loss. As a result, soft constraints handle expert utilization better and support the expert specialization process, while hard constraints maintain more generalized experts and increase overall model performance. Our findings demonstrate that experts can implicitly focus on individual sub-domains of the input space. For example, experts trained for CIFAR-100 image classification specialize in recognizing different domains such as flowers or animals without previous data clustering. Experiments with RetinaNet and the COCO dataset further indicate that object detection experts can also specialize in detecting objects of distinct sizes.


Combining AI and AM - Improving Approximate Matching through Transformer Networks

arXiv.org Artificial Intelligence

Approximate matching (AM) is a concept in digital forensics to determine the similarity between digital artifacts. An important use case of AM is the reliable and efficient detection of case-relevant data structures on a blacklist, if only fragments of the original are available. For instance, if only a cluster of indexed malware is still present during the digital forensic investigation, the AM algorithm shall be able to assign the fragment to the blacklisted malware. However, traditional AM functions like TLSH and ssdeep fail to detect files based on their fragments if the presented piece is relatively small compared to the overall file size. A second well-known issue with traditional AM algorithms is the lack of scaling due to the ever-increasing lookup databases. We propose an improved matching algorithm based on transformer models from the field of natural language processing. We call our approach Deep Learning Approximate Matching (DLAM). As a concept from artificial intelligence (AI), DLAM gets knowledge of characteristic blacklisted patterns during its training phase. Then DLAM is able to detect the patterns in a typically much larger file, that is DLAM focuses on the use case of fragment detection. We reveal that DLAM has three key advantages compared to the prominent conventional approaches TLSH and ssdeep. First, it makes the tedious extraction of known to be bad parts obsolete, which is necessary until now before any search for them with AM algorithms. This allows efficient classification of files on a much larger scale, which is important due to exponentially increasing data to be investigated. Second, depending on the use case, DLAM achieves a similar or even significantly higher accuracy in recovering fragments of blacklisted files. Third, we show that DLAM enables the detection of file correlations in the output of TLSH and ssdeep even for small fragment sizes.


Exploiting Cultural Biases via Homoglyphs in Text-to-Image Synthesis

arXiv.org Artificial Intelligence

Models for text-to-image synthesis, such as DALL-E~2 and Stable Diffusion, have recently drawn a lot of interest from academia and the general public. These models are capable of producing high-quality images that depict a variety of concepts and styles when conditioned on textual descriptions. However, these models adopt cultural characteristics associated with specific Unicode scripts from their vast amount of training data, which may not be immediately apparent. We show that by simply inserting single non-Latin characters in a textual description, common models reflect cultural stereotypes and biases in their generated images. We analyze this behavior both qualitatively and quantitatively, and identify a model's text encoder as the root cause of the phenomenon. Additionally, malicious users or service providers may try to intentionally bias the image generation to create racist stereotypes by replacing Latin characters with similarly-looking characters from non-Latin scripts, so-called homoglyphs. To mitigate such unnoticed script attacks, we propose a novel homoglyph unlearning method to fine-tune a text encoder, making it robust against homoglyph manipulations.


To Trust or Not To Trust Prediction Scores for Membership Inference Attacks

arXiv.org Artificial Intelligence

Membership inference attacks (MIAs) aim to determine whether a specific sample was used to train a predictive model. Knowing this may indeed lead to a privacy breach. Most MIAs, however, make use of the model's prediction scores - the probability of each output given some input - following the intuition that the trained model tends to behave differently on its training data. We argue that this is a fallacy for many modern deep network architectures. Consequently, MIAs will miserably fail since overconfidence leads to high false-positive rates not only on known domains but also on out-of-distribution data and implicitly acts as a defense against MIAs. Specifically, using generative adversarial networks, we are able to produce a potentially infinite number of samples falsely classified as part of the training data. In other words, the threat of MIAs is overestimated, and less information is leaked than previously assumed. Moreover, there is actually a trade-off between the overconfidence of models and their susceptibility to MIAs: the more classifiers know when they do not know, making low confidence predictions, the more they reveal the training data.


Plug & Play Attacks: Towards Robust and Flexible Model Inversion Attacks

arXiv.org Artificial Intelligence

Model inversion attacks (MIAs) aim to create synthetic images that reflect the class-wise characteristics from a target classifier's training data by exploiting the model's learned knowledge. Previous research has developed generative MIAs using generative adversarial networks (GANs) as image priors that are tailored to a specific target model. This makes the attacks time- and resource-consuming, inflexible, and susceptible to distributional shifts between datasets. To overcome these drawbacks, we present Plug & Play Attacks that loosen the dependency between the target model and image prior and enable the use of a single trained GAN to attack a broad range of targets with only minor attack adjustments needed. Moreover, we show that powerful MIAs are possible even with publicly available pre-trained GANs and under strong distributional shifts, whereas previous approaches fail to produce meaningful results. Our extensive evaluation confirms the improved robustness and flexibility of Plug & Play Attacks and their ability to create high-quality images revealing sensitive class characteristics.