Goto

Collaborating Authors

 Straub, Julian


Habitat: A Platform for Embodied AI Research

arXiv.org Artificial Intelligence

We present Habitat, a new platform for research in embodied artificial intelligence (AI). Habitat enables training embodied agents (virtual robots) in highly efficient photorealistic 3D simulation, before transferring the learned skills to reality. Specifically, Habitat consists of the following: 1. Habitat-Sim: a flexible, high-performance 3D simulator with configurable agents, multiple sensors, and generic 3D dataset handling (with built-in support for SUNCG, Matterport3D, Gibson datasets). Habitat-Sim is fast -- when rendering a scene from the Matterport3D dataset, Habitat-Sim achieves several thousand frames per second (fps) running single-threaded, and can reach over 10,000 fps multi-process on a single GPU, which is orders of magnitude faster than the closest simulator. 2. Habitat-API: a modular high-level library for end-to-end development of embodied AI algorithms -- defining embodied AI tasks (e.g. navigation, instruction following, question answering), configuring and training embodied agents (via imitation or reinforcement learning, or via classic SLAM), and benchmarking using standard metrics. These large-scale engineering contributions enable us to answer scientific questions requiring experiments that were till now impracticable or `merely' impractical. Specifically, in the context of point-goal navigation (1) we revisit the comparison between learning and SLAM approaches from two recent works and find evidence for the opposite conclusion -- that learning outperforms SLAM, if scaled to total experience far surpassing that of previous investigations, and (2) we conduct the first cross-dataset generalization experiments {train, test} x {Matterport3D, Gibson} for multiple sensors {blind, RGB, RGBD, D} and find that only agents with depth (D) sensors generalize across datasets. We hope that our open-source platform and these findings will advance research in embodied AI.


Bayesian Nonparametric Modeling of Driver Behavior using HDP Split-Merge Sampling Algorithm

arXiv.org Machine Learning

Modern vehicles are equipped with increasingly complex sensors. These sensors generate large volumes of data that provide opportunities for modeling and analysis. Here, we are interested in exploiting this data to learn aspects of behaviors and the road network associated with individual drivers. Our dataset is collected on a standard vehicle used to commute to work and for personal trips. A Hidden Markov Model (HMM) trained on the GPS position and orientation data is utilized to compress the large amount of position information into a small amount of road segment states. Each state has a set of observations, i.e. car signals, associated with it that are quantized and modeled as draws from a Hierarchical Dirichlet Process (HDP). The inference for the topic distributions is carried out using HDP split-merge sampling algorithm. The topic distributions over joint quantized car signals characterize the driving situation in the respective road state. In a novel manner, we demonstrate how the sparsity of the personal road network of a driver in conjunction with a hierarchical topic model allows data driven predictions about destinations as well as likely road conditions.


Streaming, Distributed Variational Inference for Bayesian Nonparametrics

Neural Information Processing Systems

This paper presents a methodology for creating streaming, distributed inference algorithms for Bayesian nonparametric (BNP) models. In the proposed framework, processing nodes receive a sequence of data minibatches, compute a variational posterior for each, and make asynchronous streaming updates to a central model. In contrast to previous algorithms, the proposed framework is truly streaming, distributed, asynchronous, learning-rate-free, and truncation-free. The key challenge in developing the framework, arising from fact that BNP models do not impose an inherent ordering on their components, is finding the correspondence between minibatch and central BNP posterior components before performing each update. To address this, the paper develops a combinatorial optimization problem over component correspondences, and provides an efficient solution technique. The paper concludes with an application of the methodology to the DP mixture model, with experimental results demonstrating its practical scalability and performance.


Streaming, Distributed Variational Inference for Bayesian Nonparametrics

arXiv.org Machine Learning

This paper presents a methodology for creating streaming, distributed inference algorithms for Bayesian nonparametric (BNP) models. In the proposed framework, processing nodes receive a sequence of data minibatches, compute a variational posterior for each, and make asynchronous streaming updates to a central model. In contrast to previous algorithms, the proposed framework is truly streaming, distributed, asynchronous, learning-rate-free, and truncation-free. The key challenge in developing the framework, arising from the fact that BNP models do not impose an inherent ordering on their components, is finding the correspondence between minibatch and central BNP posterior components before performing each update. To address this, the paper develops a combinatorial optimization problem over component correspondences, and provides an efficient solution technique. The paper concludes with an application of the methodology to the DP mixture model, with experimental results demonstrating its practical scalability and performance.