Goto

Collaborating Authors

 Stone, Peter


VI-IKD: High-Speed Accurate Off-Road Navigation using Learned Visual-Inertial Inverse Kinodynamics

arXiv.org Artificial Intelligence

One of the key challenges in high speed off road navigation on ground vehicles is that the kinodynamics of the vehicle terrain interaction can differ dramatically depending on the terrain. Previous approaches to addressing this challenge have considered learning an inverse kinodynamics (IKD) model, conditioned on inertial information of the vehicle to sense the kinodynamic interactions. In this paper, we hypothesize that to enable accurate high-speed off-road navigation using a learned IKD model, in addition to inertial information from the past, one must also anticipate the kinodynamic interactions of the vehicle with the terrain in the future. To this end, we introduce Visual-Inertial Inverse Kinodynamics (VI-IKD), a novel learning based IKD model that is conditioned on visual information from a terrain patch ahead of the robot in addition to past inertial information, enabling it to anticipate kinodynamic interactions in the future. We validate the effectiveness of VI-IKD in accurate high-speed off-road navigation experimentally on a scale 1/5 UT-AlphaTruck off-road autonomous vehicle in both indoor and outdoor environments and show that compared to other state-of-the-art approaches, VI-IKD enables more accurate and robust off-road navigation on a variety of different terrains at speeds of up to 3.5 m/s.


Adversarial Imitation Learning from Video using a State Observer

arXiv.org Artificial Intelligence

The imitation learning research community has recently made significant progress towards the goal of enabling artificial agents to imitate behaviors from video demonstrations alone. However, current state-of-the-art approaches developed for this problem exhibit high sample complexity due, in part, to the high-dimensional nature of video observations. Towards addressing this issue, we introduce here a new algorithm called Visual Generative Adversarial Imitation from Observation using a State Observer VGAIfO-SO. At its core, VGAIfO-SO seeks to address sample inefficiency using a novel, self-supervised state observer, which provides estimates of lower-dimensional proprioceptive state representations from high-dimensional images. We show experimentally in several continuous control environments that VGAIfO-SO is more sample efficient than other IfO algorithms at learning from video-only demonstrations and can sometimes even achieve performance close to the Generative Adversarial Imitation from Observation (GAIfO) algorithm that has privileged access to the demonstrator's proprioceptive state information.


Learning a Robust Multiagent Driving Policy for Traffic Congestion Reduction

arXiv.org Artificial Intelligence

The advent of automated and autonomous vehicles (AVs) creates opportunities to achieve system-level goals using multiple AVs, such as traffic congestion reduction. Past research has shown that multiagent congestion-reducing driving policies can be learned in a variety of simulated scenarios. While initial proofs of concept were in small, closed traffic networks with a centralized controller, recently successful results have been demonstrated in more realistic settings with distributed control policies operating in open road networks where vehicles enter and leave. However, these driving policies were mostly tested under the same conditions they were trained on, and have not been thoroughly tested for robustness to different traffic conditions, which is a critical requirement in real-world scenarios. This paper presents a learned multiagent driving policy that is robust to a variety of open-network traffic conditions, including vehicle flows, the fraction of AVs in traffic, AV placement, and different merging road geometries. A thorough empirical analysis investigates the sensitivity of such a policy to the amount of AVs in both a simple merge network and a more complex road with two merging ramps. It shows that the learned policy achieves significant improvement over simulated human-driven policies even with AV penetration as low as 2%. The same policy is also shown to be capable of reducing traffic congestion in more complex roads with two merging ramps.


Conflict-Averse Gradient Descent for Multi-task Learning

arXiv.org Artificial Intelligence

The goal of multi-task learning is to enable more efficient learning than single task learning by sharing model structures for a diverse set of tasks. A standard multi-task learning objective is to minimize the average loss across all tasks. While straightforward, using this objective often results in much worse final performance for each task than learning them independently. A major challenge in optimizing a multi-task model is the conflicting gradients, where gradients of different task objectives are not well aligned so that following the average gradient direction can be detrimental to specific tasks' performance. Previous work has proposed several heuristics to manipulate the task gradients for mitigating this problem. But most of them lack convergence guarantee and/or could converge to any Pareto-stationary point. In this paper, we introduce Conflict-Averse Gradient descent (CAGrad) which minimizes the average loss function, while leveraging the worst local improvement of individual tasks to regularize the algorithm trajectory. CAGrad balances the objectives automatically and still provably converges to a minimum over the average loss. It includes the regular gradient descent (GD) and the multiple gradient descent algorithm (MGDA) in the multi-objective optimization (MOO) literature as special cases. On a series of challenging multi-task supervised learning and reinforcement learning tasks, CAGrad achieves improved performance over prior state-of-the-art multi-objective gradient manipulation methods.


Recent Advances in Leveraging Human Guidance for Sequential Decision-Making Tasks

arXiv.org Artificial Intelligence

With respect to artificial learning agents in particular, humans must provide some specification of what the agent should learn to perform. One method by which humans typically provide this specification is by designing a stationary reward function. This function provides a reward to the agent when it correctly performs the desired task and, perhaps, punishment when the agent does not. Artificial learning agents may then approach the task-learning process using reinforcement learning (RL) techniques (Sutton and Barto, 2018) that seek to find a policy (i.e., an explicit function that the agent uses to make decisions) that allows the agent to gather as much reward as possible. Another popular way in which humans specify tasks for artificial agents to learn is by demonstrating the task themselves. Typically, this is accomplished by having the human perform the task while the learning agent observes the actions that the human takes (e.g., the human physically moving a robot arm). In these cases, artificial agents may use approaches from imitation learning (IL) (Schaal, 1999; Argall et al., 2009; Osa et al., 2018) in order to find policies that allow them to perform the demonstrated task.


Dynamic Sparse Training for Deep Reinforcement Learning

arXiv.org Artificial Intelligence

Deep reinforcement learning has achieved significant success in many decision-making tasks in various fields. However, it requires a large training time of dense neural networks to obtain a good performance. This hinders its applicability on low-resource devices where memory and computation are strictly constrained. In a step towards enabling deep reinforcement learning agents to be applied to low-resource devices, in this work, we propose for the first time to dynamically train deep reinforcement learning agents with sparse neural networks from scratch. We adopt the evolution principles of dynamic sparse training in the reinforcement learning paradigm and introduce a training algorithm that optimizes the sparse topology and the weight values jointly to dynamically fit the incoming data. Our approach is easy to be integrated into existing deep reinforcement learning algorithms and has many favorable advantages. First, it allows for significant compression of the network size which reduces the memory and computation costs substantially. This would accelerate not only the agent inference but also its training process. Second, it speeds up the agent learning process and allows for reducing the number of required training steps. Third, it can achieve higher performance than training the dense counterpart network. We evaluate our approach on OpenAI gym continuous control tasks. The experimental results show the effectiveness of our approach in achieving higher performance than one of the state-of-art baselines with a 50\% reduction in the network size and floating-point operations (FLOPs). Moreover, our proposed approach can reach the same performance achieved by the dense network with a 40-50\% reduction in the number of training steps.


VOILA: Visual-Observation-Only Imitation Learning for Autonomous Navigation

arXiv.org Artificial Intelligence

While imitation learning for vision based autonomous mobile robot navigation has recently received a great deal of attention in the research community, existing approaches typically require state action demonstrations that were gathered using the deployment platform. However, what if one cannot easily outfit their platform to record these demonstration signals or worse yet the demonstrator does not have access to the platform at all? Is imitation learning for vision based autonomous navigation even possible in such scenarios? In this work, we hypothesize that the answer is yes and that recent ideas from the Imitation from Observation (IfO) literature can be brought to bear such that a robot can learn to navigate using only ego centric video collected by a demonstrator, even in the presence of viewpoint mismatch. To this end, we introduce a new algorithm, Visual Observation only Imitation Learning for Autonomous navigation (VOILA), that can successfully learn navigation policies from a single video demonstration collected from a physically different agent. We evaluate VOILA in the photorealistic AirSim simulator and show that VOILA not only successfully imitates the expert, but that it also learns navigation policies that can generalize to novel environments. Further, we demonstrate the effectiveness of VOILA in a real world setting by showing that it allows a wheeled Jackal robot to successfully imitate a human walking in an environment using a video recorded using a mobile phone camera.


Sequential Online Chore Division for Autonomous Vehicle Convoy Formation

arXiv.org Artificial Intelligence

Chore division is a class of fair division problems in which some undesirable "resource" must be shared among a set of participants, with each participant wanting to get as little as possible. Typically the set of participants is fixed and known at the outset. This paper introduces a novel variant, called sequential online chore division (SOCD), in which participants arrive and depart online, while the chore is being performed: both the total number of participants and their arrival/departure times are initially unknown. In SOCD, exactly one agent must be performing the chore at any give time (e.g. keeping lookout), and switching the performer incurs a cost. In this paper, we propose and analyze three mechanisms for SOCD: one centralized mechanism using side payments, and two distributed ones that seek to balance the participants' loads. Analysis and results are presented in a domain motivated by autonomous vehicle convoy formation, where the chore is leading the convoy so that all followers can enjoy reduced wind resistance.


DEALIO: Data-Efficient Adversarial Learning for Imitation from Observation

arXiv.org Artificial Intelligence

In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator. Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms. This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk. In this work, we hypothesize that we can incorporate ideas from model-based reinforcement learning with adversarial methods for IfO in order to increase the data efficiency of these methods without sacrificing performance. Specifically, we consider time-varying linear Gaussian policies, and propose a method that integrates the linear-quadratic regulator with path integral policy improvement into an existing adversarial IfO framework. The result is a more data-efficient IfO algorithm with better performance, which we show empirically in four simulation domains: using far fewer interactions with the environment, the proposed method exhibits similar or better performance than the existing technique.


Expected Value of Communication for Planning in Ad Hoc Teamwork

arXiv.org Artificial Intelligence

A desirable goal for autonomous agents is to be able to coordinate on the fly with previously unknown teammates. Known as "ad hoc teamwork", enabling such a capability has been receiving increasing attention in the research community. One of the central challenges in ad hoc teamwork is quickly recognizing the current plans of other agents and planning accordingly. In this paper, we focus on the scenario in which teammates can communicate with one another, but only at a cost. Thus, they must carefully balance plan recognition based on observations vs. that based on communication. This paper proposes a new metric for evaluating how similar are two policies that a teammate may be following - the Expected Divergence Point (EDP). We then present a novel planning algorithm for ad hoc teamwork, determining which query to ask and planning accordingly. We demonstrate the effectiveness of this algorithm in a range of increasingly general communication in ad hoc teamwork problems.