Stoller, Scott D.
A Barrier Certificate-based Simplex Architecture for Systems with Approximate and Hybrid Dynamics
Damare, Amol, Roy, Shouvik, Sharma, Roshan, DSouza, Keith, Smolka, Scott A., Stoller, Scott D.
Bb-Simplex is centered around the Simplex control architecture, which consists of a high-performance advanced controller that is not guaranteed to maintain safety of the plant, a verified-safe baseline controller, and a decision module that switches control of the plant between the two controllers to ensure safety without sacrificing performance. In Bb-Simplex, Barrier certificates are used to prove that the baseline controller ensures safety. Furthermore, Bb-Simplex features a new automated method for deriving, from the barrier certificate, the conditions for switching between the controllers. Our method is based on the Taylor expansion of the barrier certificate and yields computationally inexpensive switching conditions. We also propose extensions to Bb-Simplex to enable its use in hybrid systems, which have multiple modes each with its own dynamics, and to support its use when only approximate dynamics (not exact dynamics) are available, for both continuous-time and hybrid dynamical systems. We consider significant applications of Bb-Simplex to microgrids featuring advanced controllers in the form of neural networks trained using reinforcement learning. These microgrids are modeled in RTDS, an industry-standard high-fidelity, real-time power systems simulator. Our results demonstrate that Bb-Simplex can automatically derive switching conditions for complex continuous-time and hybrid systems, the switching conditions are not overly conservative, and Bb-Simplex ensures safety even in the presence of adversarial attacks on the neural controller when only approximate dynamics (with an error bound) are available.
Learning Attribute-Based and Relationship-Based Access Control Policies with Unknown Values
Bui, Thang, Stoller, Scott D.
Attribute-Based Access Control (ABAC) and Relationship-based access control (ReBAC) provide a high level of expressiveness and flexibility that promote security and information sharing, by allowing policies to be expressed in terms of attributes of and chains of relationships between entities. Algorithms for learning ABAC and ReBAC policies from legacy access control information have the potential to significantly reduce the cost of migration to ABAC or ReBAC. This paper presents the first algorithms for mining ABAC and ReBAC policies from access control lists (ACLs) and incomplete information about entities, where the values of some attributes of some entities are unknown. We show that the core of this problem can be viewed as learning a concise three-valued logic formula from a set of labeled feature vectors containing unknowns, and we give the first algorithm (to the best of our knowledge) for that problem.
Recursive Rules with Aggregation: A Simple Unified Semantics
Liu, Yanhong A., Stoller, Scott D.
Many computation problems, including complex reasoning problems in particular, are most clearly and easily specified using logical rules. However, such reasoning problems in practical applications, especially for large applications and when faced with uncertain situations, require the use of recursive rules with aggregation such as counts and sums. Unfortunately, even the meaning of such rules has been challenging and remains a subject with significant complication and disagreement by experts. As a simple example, consider a single rule for Tom to attend the logic seminar: Tom will attend the logic seminar if the number of people who will attend it is at least 20. What does the rule mean?
Knowledge of Uncertain Worlds: Programming with Logical Constraints
Liu, Yanhong A., Stoller, Scott D.
Programming with logic for sophisticated applications must deal with recursion and negation, which have created significant challenges in logic, leading to many different, conflicting semantics of rules. This paper describes a unified language, DA logic, for design and analysis logic, based on the unifying founded semantics and constraint semantics, that support the power and ease of programming with different intended semantics. The key idea is to provide meta constraints, support the use of uncertain information in the form of either undefined values or possible combinations of values, and promote the use of knowledge units that can be instantiated by any new predicates, including predicates with additional arguments.
Neural Simplex Architecture
Phan, Dung, Paoletti, Nicola, Grosu, Radu, Jansen, Nils, Smolka, Scott A., Stoller, Scott D.
We present the Neural Simplex Architecture (NSA), a new approach to runtime assurance that provides safety guarantees for neural controllers (obtained e.g. using reinforcement learning) of complex autonomous and other cyber-physical systems without unduly sacrificing performance. NSA is inspired by the Simplex control architecture of Sha et al., but with some significant differences. In the traditional Simplex approach, the advanced controller (AC) is treated as a black box; there are no techniques for correcting the AC after it generates a potentially unsafe control input that causes a failover to the BC. Our NSA addresses this limitation. NSA not only provides safety assurances for CPSs in the presence of a possibly faulty neural controller, but can also improve the safety of such a controller in an online setting via retraining, without degrading its performance. NSA also offers reverse switching strategies, which allow the AC to resume control of the system under reasonable conditions, allowing the mission to continue unabated. Our experimental results on several significant case studies, including a target-seeking ground rover navigating an obstacle field and a neural controller for an artificial pancreas system, demonstrate NSA's benefits.
Neural State Classification for Hybrid Systems
Phan, Dung, Paoletti, Nicola, Zhang, Timothy, Grosu, Radu, Smolka, Scott A., Stoller, Scott D.
We introduce the State Classification Problem (SCP) for hybrid systems, and present Neural State Classification (NSC) as an efficient solution technique. SCP generalizes the model checking problem as it entails classifying each state $s$ of a hybrid automaton as either positive or negative, depending on whether or not $s$ satisfies a given time-bounded reachability specification. This is an interesting problem in its own right, which NSC solves using machine-learning techniques, Deep Neural Networks in particular. State classifiers produced by NSC tend to be very efficient (run in constant time and space), but may be subject to classification errors. To quantify and mitigate such errors, our approach comprises: i) techniques for certifying, with statistical guarantees, that an NSC classifier meets given accuracy levels; ii) tuning techniques, including a novel technique based on adversarial sampling, that can virtually eliminate false negatives (positive states classified as negative), thereby making the classifier more conservative. We have applied NSC to six nonlinear hybrid system benchmarks, achieving an accuracy of 99.25% to 99.98%, and a false-negative rate of 0.0033 to 0, which we further reduced to 0.0015 to 0 after tuning the classifier. We believe that this level of accuracy is acceptable in many practical applications, and that these results demonstrate the promise of the NSC approach.
Founded Semantics and Constraint Semantics of Logic Rules
Liu, Yanhong A., Stoller, Scott D.
This paper describes a simple new semantics for logic rules, founded semantics, and its straightforward extension to another simple new semantics, constraint semantics. The new semantics support unrestricted negation, as well as unrestricted existential and universal quantifications. They are uniquely expressive and intuitive by allowing assumptions about the predicates and rules to be specified explicitly. They are completely declarative and easy to understand and relate cleanly to prior semantics. In addition, founded semantics can be computed in linear time in the size of the ground program.
Demand-Driven Incremental Object Queries
Liu, Yanhong A., Brandvein, Jon, Stoller, Scott D., Lin, Bo
Object queries are essential in information seeking and decision making in vast areas of applications. However, a query may involve complex conditions on objects and sets, which can be arbitrarily nested and aliased. The objects and sets involved as well as the demand---the given parameter values of interest---can change arbitrarily. How to implement object queries efficiently under all possible updates, and furthermore to provide complexity guarantees? This paper describes an automatic method. The method allows powerful queries to be written completely declaratively. It transforms demand as well as all objects and sets into relations. Most importantly, it defines invariants for not only the query results, but also all auxiliary values about the objects and sets involved, including those for propagating demand, and incrementally maintains all of them. Implementation and experiments with problems from a variety of application areas, including distributed algorithms and probabilistic queries, confirm the analyzed complexities, trade-offs, and significant improvements over prior work.