Goto

Collaborating Authors

 Stoller, Daniel


LLark: A Multimodal Foundation Model for Music

arXiv.org Artificial Intelligence

Music has a unique and complex structure which is challenging for both expert humans and existing AI systems to understand, and presents unique challenges relative to other forms of audio. We present LLark, an instruction-tuned multimodal model for music understanding. We detail our process for dataset creation, which involves augmenting the annotations of diverse open-source music datasets and converting them to a unified instruction-tuning format. We propose a multimodal architecture for LLark, integrating a pretrained generative model for music with a pretrained language model. In evaluations on three types of tasks (music understanding, captioning, and reasoning), we show that our model matches or outperforms existing baselines in zero-shot generalization for music understanding, and that humans show a high degree of agreement with the model's responses in captioning and reasoning tasks. LLark is trained entirely from open-source music data and models, and we make our training code available along with the release of this paper. Additional results and audio examples are at https://bit.ly/llark, and our source code is available at https://github.com/spotify-research/llark .


Contrastive Learning-Based Audio to Lyrics Alignment for Multiple Languages

arXiv.org Artificial Intelligence

Lyrics alignment gained considerable attention in recent years. State-of-the-art systems either re-use established speech recognition toolkits, or design end-to-end solutions involving a Connectionist Temporal Classification (CTC) loss. However, both approaches suffer from specific weaknesses: toolkits are known for their complexity, and CTC systems use a loss designed for transcription which can limit alignment accuracy. In this paper, we use instead a contrastive learning procedure that derives cross-modal embeddings linking the audio and text domains. This way, we obtain a novel system that is simple to train end-to-end, can make use of weakly annotated training data, jointly learns a powerful text model, and is tailored to alignment. The system is not only the first to yield an average absolute error below 0.2 seconds on the standard Jamendo dataset but it is also robust to other languages, even when trained on English data only. Finally, we release word-level alignments for the JamendoLyrics Multi-Lang dataset.


Training Generative Adversarial Networks from Incomplete Observations using Factorised Discriminators

arXiv.org Machine Learning

Generative adversarial networks (GANs) have shown great success in applications such as image generation and inpainting. To stabilize the challenging training process, one typically requires large datasets - which are not available for many tasks. Large amounts of additionally available incomplete observations could be exploited in many cases, but it remains unclear how to train a GAN in such a setting. To address this shortcoming, we factorise the high-dimensional joint distribution of the complete data into a set of lower-dimensional distributions along with their dependencies. As a consequence, we can split the discriminator in a GAN into multiple "sub-discriminators" that can be independently trained from incomplete observations. Their outputs can be combined to obtain an estimate of the density ratio between the joint real and the generator distribution, which enables training the generator as in the original GAN framework. As an additional benefit, our modularisation facilitates incorporating prior knowledge into the discriminator architecture. We apply our method to image generation, image segmentation and audio source separation, and show an improved performance compared to a standard GAN when additional incomplete training examples are available.


GAN-based Generation and Automatic Selection of Explanations for Neural Networks

arXiv.org Machine Learning

One way to interpret trained deep neural networks (DNNs) is by inspecting characteristics that neurons in the model respond to, such as by iteratively optimising the model input (e.g., an image) to maximally activate specific neurons. However, this requires a careful selection of hyper-parameters to generate interpretable examples for each neuron of interest, and current methods rely on a manual, qualitative evaluation of each setting, which is prohibitively slow. We introduce a new metric that uses Fr\'echet Inception Distance (FID) to encourage similarity between model activations for real and generated data. This provides an efficient way to evaluate a set of generated examples for each setting of hyper-parameters. We also propose a novel GAN-based method for generating explanations that enables an efficient search through the input space and imposes a strong prior favouring realistic outputs. We apply our approach to a classification model trained to predict whether a music audio recording contains singing voice. Our results suggest that this proposed metric successfully selects hyper-parameters leading to interpretable examples, avoiding the need for manual evaluation. Moreover, we see that examples synthesised to maximise or minimise the predicted probability of singing voice presence exhibit vocal or non-vocal characteristics, respectively, suggesting that our approach is able to generate suitable explanations for understanding concepts learned by a neural network.


Wave-U-Net: A Multi-Scale Neural Network for End-to-End Audio Source Separation

arXiv.org Machine Learning

Models for audio source separation usually operate on the magnitude spectrum, which ignores phase information and makes separation performance dependant on hyper-parameters for the spectral front-end. Therefore, we investigate end-to-end source separation in the time-domain, which allows modelling phase information and avoids fixed spectral transformations. Due to high sampling rates for audio, employing a long temporal input context on the sample level is difficult, but required for high quality separation results because of long-range temporal correlations. In this context, we propose the Wave-U-Net, an adaptation of the U-Net to the one-dimensional time domain, which repeatedly resamples feature maps to compute and combine features at different time scales. We introduce further architectural improvements, including an output layer that enforces source additivity, an upsampling technique and a context-aware prediction framework to reduce output artifacts. Experiments for singing voice separation indicate that our architecture yields a performance comparable to a state-of-the-art spectrogram-based U-Net architecture, given the same data. Finally, we reveal a problem with outliers in the currently used SDR evaluation metrics and suggest reporting rank-based statistics to alleviate this problem.