Stojnic, Robert
Nougat: Neural Optical Understanding for Academic Documents
Blecher, Lukas, Cucurull, Guillem, Scialom, Thomas, Stojnic, Robert
The majority of scientific knowledge is stored in books or published in scientific journals, most commonly in the Portable Document Format (PDF). Next to HTML, PDFs are the second most prominent data format on the internet, making up 2.4% of common crawl [1]. However, the information stored in these files is very difficult to extract into any other formats. This is especially true for highly specialized documents, such as scientific research papers, where the semantic information of mathematical expressions is lost. Existing Optical Character Recognition (OCR) engines, such as Tesseract OCR [2], excel at detecting and classifying individual characters and words in an image, but fail to understand the relationship between them due to their line-by-line approach. This means that they treat superscripts and subscripts in the same way as the surrounding text, which is a significant drawback for mathematical expressions. In mathematical notations like fractions, exponents, and matrices, relative positions of characters are crucial. Converting academic research papers into machine-readable text also enables accessibility and searchability of science as a whole. The information of millions of academic papers can not be fully accessed because they are locked behind an unreadable format.
Llama 2: Open Foundation and Fine-Tuned Chat Models
Touvron, Hugo, Martin, Louis, Stone, Kevin, Albert, Peter, Almahairi, Amjad, Babaei, Yasmine, Bashlykov, Nikolay, Batra, Soumya, Bhargava, Prajjwal, Bhosale, Shruti, Bikel, Dan, Blecher, Lukas, Ferrer, Cristian Canton, Chen, Moya, Cucurull, Guillem, Esiobu, David, Fernandes, Jude, Fu, Jeremy, Fu, Wenyin, Fuller, Brian, Gao, Cynthia, Goswami, Vedanuj, Goyal, Naman, Hartshorn, Anthony, Hosseini, Saghar, Hou, Rui, Inan, Hakan, Kardas, Marcin, Kerkez, Viktor, Khabsa, Madian, Kloumann, Isabel, Korenev, Artem, Koura, Punit Singh, Lachaux, Marie-Anne, Lavril, Thibaut, Lee, Jenya, Liskovich, Diana, Lu, Yinghai, Mao, Yuning, Martinet, Xavier, Mihaylov, Todor, Mishra, Pushkar, Molybog, Igor, Nie, Yixin, Poulton, Andrew, Reizenstein, Jeremy, Rungta, Rashi, Saladi, Kalyan, Schelten, Alan, Silva, Ruan, Smith, Eric Michael, Subramanian, Ranjan, Tan, Xiaoqing Ellen, Tang, Binh, Taylor, Ross, Williams, Adina, Kuan, Jian Xiang, Xu, Puxin, Yan, Zheng, Zarov, Iliyan, Zhang, Yuchen, Fan, Angela, Kambadur, Melanie, Narang, Sharan, Rodriguez, Aurelien, Stojnic, Robert, Edunov, Sergey, Scialom, Thomas
In this work, we develop and release Llama 2, a collection of pretrained and fine-tuned large language models (LLMs) ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama 2-Chat, are optimized for dialogue use cases. Our models outperform open-source chat models on most benchmarks we tested, and based on our human evaluations for helpfulness and safety, may be a suitable substitute for closed-source models. We provide a detailed description of our approach to fine-tuning and safety improvements of Llama 2-Chat in order to enable the community to build on our work and contribute to the responsible development of LLMs.
Galactica: A Large Language Model for Science
Taylor, Ross, Kardas, Marcin, Cucurull, Guillem, Scialom, Thomas, Hartshorn, Anthony, Saravia, Elvis, Poulton, Andrew, Kerkez, Viktor, Stojnic, Robert
Information overload is a major obstacle to scientific progress. The explosive growth in scientific literature and data has made it ever harder to discover useful insights in a large mass of information. Today scientific knowledge is accessed through search engines, but they are unable to organize scientific knowledge alone. In this paper we introduce Galactica: a large language model that can store, combine and reason about scientific knowledge. We train on a large scientific corpus of papers, reference material, knowledge bases and many other sources. We outperform existing models on a range of scientific tasks. On technical knowledge probes such as LaTeX equations, Galactica outperforms the latest GPT-3 by 68.2% versus 49.0%. Galactica also performs well on reasoning, outperforming Chinchilla on mathematical MMLU by 41.3% to 35.7%, and PaLM 540B on MATH with a score of 20.4% versus 8.8%. It also sets a new state-of-the-art on downstream tasks such as PubMedQA and MedMCQA dev of 77.6% and 52.9%. And despite not being trained on a general corpus, Galactica outperforms BLOOM and OPT-175B on BIG-bench. We believe these results demonstrate the potential for language models as a new interface for science. We open source the model for the benefit of the scientific community.