Goto

Collaborating Authors

 Stevenson, Ian


Inferring spike-timing-dependent plasticity from spike train data

Neural Information Processing Systems

Synaptic plasticity underlies learning and is thus central for development, memory, and recovery from injury. However, it is often difficult to detect changes in synaptic strength in vivo, since intracellular recordings are experimentally challenging. Here we present two methods aimed at inferring changes in the coupling between pairs of neurons from extracellularly recorded spike trains. First, using a generalized bilinear model with Poisson output we estimate time-varying coupling assuming that all changes are spike-timing-dependent. This approach allows model-based estimation of STDP modification functions from pairs of spike trains. Then, using recursive point-process adaptive filtering methods we estimate more general variation in coupling strength over time. Using simulations of neurons undergoing spike-timing dependent modification, we show that the true modification function can be recovered. Using multi-electrode data from motor cortex we then illustrate the use of this technique on in vivo data.


Structural inference affects depth perception in the context of potential occlusion

Neural Information Processing Systems

In many domains, humans appear to combine perceptual cues in a near-optimal, probabilistic fashion: two noisy pieces of information tend to be combined linearly with weights proportional to the precision of each cue. Here we present a case where structural information plays an important role. The presence of a background cue gives rise to the possibility of occlusion, and places a soft constraint on the location of a target – in effect propelling it forward. We present an ideal observer model of depth estimation for this situation where structural or ordinal information is important and then fit the model to human data from a stereo-matching task. To test whether subjects are truly using ordinal cues in a probabilistic manner we then vary the uncertainty of the task. We find that the model accurately predicts shifts in subject’s behavior. Our results indicate that the nervous system estimates depth ordering in a probabilistic fashion and estimates the structure of the visual scene during depth perception.